Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals

粒径 Zeta电位 纳米晶 溶解 溶解度 材料科学 化学工程 粒度分布 纳米颗粒 均质化(气候) 色谱法 纳米技术 化学 有机化学 工程类 生物多样性 生物 生态学
作者
Valentina Martena,Ranjita Shegokar,Piera Di Martino,Rainer Müller
出处
期刊:Drug Development and Industrial Pharmacy [Informa]
卷期号:40 (9): 1199-1205 被引量:17
标识
DOI:10.3109/03639045.2013.810635
摘要

Nicergoline, a poorly soluble active pharmaceutical ingredient, possesses vaso-active properties which causes peripheral and central vasodilatation. In this study, nanocrystals of nicergoline were prepared in an aqueous solution of polysorbate 80 (nanosuspension) by using four different laboratory scale size reduction techniques: high pressure homogenization (HPH), bead milling (BM) and combination techniques (high pressure homogenization followed by bead milling HPH + BM, and bead milling followed by high pressure homogenization BM + HPH). Nanocrystals were investigated regarding to their mean particles size, zeta potential and particle dissolution. A short term physical stability study on nanocrystals stored at three different temperatures (4, 20 and 40 °C) was performed to evaluate the tendency to change in particle size, aggregation and zeta potential. The size reduction technique and the process parameters like milling time, number of homogenization cycles and pressure greatly affected the size of nanocrystals. Among the techniques used, the combination techniques showed superior and consistent particle size reduction compared to the other two methods, HPH + BM and BM + HPH giving nanocrystals of a mean particle size of 260 and 353 nm, respectively. The particle dissolution was increased for any nanocrystals samples, but it was particularly increased by HPH and combination techniques. Independently to the production method, nicergoline nanocrystals showed slight increase in particle size over the time, but remained below 500 nm at 20 °C and refrigeration conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
chemyin发布了新的文献求助10
3秒前
科研通AI6应助Brian采纳,获得10
3秒前
3秒前
Angie完成签到,获得积分10
4秒前
NexusExplorer应助frankk采纳,获得10
4秒前
我是老大应助Culto采纳,获得10
4秒前
游游游发布了新的文献求助10
5秒前
薛鸿锋完成签到,获得积分20
6秒前
7秒前
HUYAOWEI发布了新的文献求助10
7秒前
317关闭了317文献求助
7秒前
Hello应助ZYQ采纳,获得10
8秒前
8秒前
8秒前
8秒前
lal完成签到 ,获得积分10
8秒前
9秒前
要减肥靳完成签到,获得积分20
9秒前
9秒前
兮兮的老母亲关注了科研通微信公众号
9秒前
9秒前
青葙完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
研友_ZlqeD8完成签到,获得积分10
10秒前
专注的问寒应助乐乘采纳,获得20
10秒前
11秒前
chemyin完成签到,获得积分10
11秒前
111完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
迷路的傲南完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656374
求助须知:如何正确求助?哪些是违规求助? 4803112
关于积分的说明 15075686
捐赠科研通 4814650
什么是DOI,文献DOI怎么找? 2575863
邀请新用户注册赠送积分活动 1531210
关于科研通互助平台的介绍 1489805