解码方法
发射机
传输(电信)
编码器
计算机科学
频道(广播)
算法
保密
适配器(计算)
拓扑(电路)
数学
计算机网络
电信
组合数学
计算机硬件
计算机安全
操作系统
标识
DOI:10.1002/j.1538-7305.1975.tb02040.x
摘要
We consider the situation in which digital data is to be reliably transmitted over a discrete, memoryless channel (dmc) that is subjected to a wire-tap at the receiver. We assume that the wire-tapper views the channel output via a second dmc). Encoding by the transmitter and decoding by the receiver are permitted. However, the code books used in these operations are assumed to be known by the wire-tapper. The designer attempts to build the encoder-decoder in such a way as to maximize the transmission rate R, and the equivocation d of the data as seen by the wire-tapper. In this paper, we find the trade-off curve between R and d, assuming essentially perfect (“error-free”) transmission. In particular, if d is equal to Hs, the entropy of the data source, then we consider that the transmission is accomplished in perfect secrecy. Our results imply that there exists a C s > 0, such that reliable transmission at rates up to C s is possible in approximately perfect secrecy.
科研通智能强力驱动
Strongly Powered by AbleSci AI