Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols

人工神经网络 多酚 生物系统 萃取(化学) 反向传播 产量(工程) 化学 数学 近似误差 色谱法 遗传算法 人工智能 计算机科学 算法 材料科学 数学优化 有机化学 生物 冶金 抗氧化剂
作者
Jun Xi,Yujing Xue,Yinxiang Xu,Yuhong Shen
出处
期刊:Food Chemistry [Elsevier]
卷期号:141 (1): 320-326 被引量:86
标识
DOI:10.1016/j.foodchem.2013.02.084
摘要

In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R2 of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2 mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
Wcy发布了新的文献求助10
1秒前
科研通AI6应助sunflower采纳,获得10
1秒前
科研通AI6应助乔治采纳,获得10
1秒前
scifff完成签到 ,获得积分10
2秒前
大个应助无误采纳,获得30
3秒前
科目三应助老实的友桃采纳,获得10
3秒前
3秒前
Jasper应助自由的钢笔采纳,获得10
4秒前
5秒前
xzy998应助可乐采纳,获得10
6秒前
kaka完成签到,获得积分10
6秒前
8秒前
8秒前
皞渺发布了新的文献求助10
8秒前
小朵发布了新的文献求助30
8秒前
9秒前
打工人完成签到,获得积分10
9秒前
9秒前
完美世界应助mdjinij采纳,获得10
10秒前
蓝天应助APt采纳,获得10
11秒前
scifff关注了科研通微信公众号
11秒前
顺利毕业完成签到,获得积分10
12秒前
12秒前
12秒前
euphoria发布了新的文献求助10
12秒前
maxiao发布了新的文献求助10
13秒前
13秒前
李梦姣发布了新的文献求助10
14秒前
14秒前
15秒前
GUAN完成签到,获得积分20
15秒前
无误发布了新的文献求助30
17秒前
bkagyin应助yyy采纳,获得10
17秒前
云小澈完成签到,获得积分10
17秒前
euphoria完成签到,获得积分10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
BowieHuang应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553396
求助须知:如何正确求助?哪些是违规求助? 4637950
关于积分的说明 14651735
捐赠科研通 4579835
什么是DOI,文献DOI怎么找? 2511924
邀请新用户注册赠送积分活动 1486817
关于科研通互助平台的介绍 1457745