二亚胺
聚合物太阳能电池
共聚物
接受者
聚合物
材料科学
高分子化学
共轭体系
热稳定性
光化学
化学
有机化学
分子
苝
复合材料
物理
凝聚态物理
作者
Ling‐Wei Xue,Yankang Yang,Haijun Bin,Zhiguo Zhang,Jing Zhang,Yunxu Yang,Yongfang Li
摘要
ABSTRACT Two n ‐type conjugated D‐A copolymers, P(TVT‐NDI) and P(FVF‐NDI) with thienylene‐vinylene‐thienylene (TVT) or furanylene‐vinylene‐furanylene (FVF) as donor (D) units and naphthalene diimide (NDI) as the acceptor (A) units, were synthesized by the Stille coupling copolymerization. The two polymers possess good solubility, high thermal stability, and broad absorption bands with absorption edges at 866 nm for P(TVT‐NDI) and 886 nm for P(FVF‐NDI) . The LUMO energy levels of P(TVT‐NDI) and P(FVF‐NDI) are −3.80 eV and −3.76 eV respectively, so the two polymers are suitable for the application as acceptor in blending with most polymer donor in PSCs based on the energy level matching point of view. All polymer solar cells (all‐PSCs) were fabricated with P(TVT‐NDI) or P(FVF‐NDI) as acceptor and medium bandgap polymer J51 as donor for investigating the photovoltaic performance of the two n ‐type conjugated polymer acceptors. And higher power conversion efficiency of 6.43% for P(TVT‐NDI) and 5.21% for P(FVF‐NDI) was obtained. The results indicate that arylenevinylenearylene–naphthalene diimide copolymer are promising polymer acceptor for all–PSCs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1757–1764
科研通智能强力驱动
Strongly Powered by AbleSci AI