UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

激光雷达 遥感 高光谱成像 多光谱图像 均方误差 天蓬 植被(病理学) 树冠 环境科学 数字高程模型 地理 数学 医学 统计 病理 考古
作者
Temuulen Tsagaan Sankey,Jonathon J. Donager,Jason McVay,Joel B. Sankey
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:195: 30-43 被引量:419
标识
DOI:10.1016/j.rse.2017.04.007
摘要

Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官老师完成签到,获得积分10
1秒前
donnydai发布了新的文献求助10
2秒前
李绵羊发布了新的文献求助10
2秒前
SciGPT应助文文采纳,获得10
3秒前
zzj陛下完成签到,获得积分10
3秒前
3秒前
jiam完成签到,获得积分20
4秒前
yznfly应助学不可以已采纳,获得200
4秒前
六六完成签到,获得积分20
4秒前
苗条辣条发布了新的文献求助10
5秒前
ioi完成签到 ,获得积分10
7秒前
星空下的皮先生完成签到,获得积分10
7秒前
瓜皮糖浆完成签到,获得积分10
8秒前
Aspire完成签到 ,获得积分10
8秒前
英姑应助阔达荣轩采纳,获得10
8秒前
汉堡包应助冷傲咖啡豆采纳,获得10
8秒前
打工仔发布了新的文献求助20
9秒前
万能图书馆应助王泽采纳,获得10
9秒前
烟酒生发布了新的文献求助10
9秒前
9秒前
10秒前
香蕉觅云应助呆萌芙蓉采纳,获得10
10秒前
11秒前
12秒前
13秒前
chaochao完成签到,获得积分10
13秒前
小蘑菇应助secret采纳,获得10
13秒前
14秒前
科研通AI2S应助tianmafei采纳,获得10
16秒前
16秒前
Owen应助Pony采纳,获得10
16秒前
17秒前
Allfine完成签到,获得积分10
18秒前
文文发布了新的文献求助10
18秒前
研友_VZG7GZ应助冯冯采纳,获得10
18秒前
优美的觅珍完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
慧慧发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484315
求助须知:如何正确求助?哪些是违规求助? 4584584
关于积分的说明 14398801
捐赠科研通 4514705
什么是DOI,文献DOI怎么找? 2474090
邀请新用户注册赠送积分活动 1460005
关于科研通互助平台的介绍 1433421