Hydrogen/Deuterium and 16O/18O-Exchange Mass Spectrometry Boosting the Reliability of Compound Identification

化学 质谱法 碎片(计算) 同位素 质谱 分子 洗脱 分析化学(期刊) 色谱法 原子物理学 核物理学 有机化学 物理 操作系统 计算机科学
作者
Yury Kostyukevich,Alexander Zherebker,Alexey A. Orlov,Oxana A. Kovaleva,Tatyana I. Burykina,Boris N. Isotov,Е. Н. Николаев
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (10): 6877-6885 被引量:15
标识
DOI:10.1021/acs.analchem.9b05379
摘要

Accurate and reliable identification of chemical compounds is the ultimate goal of mass spectrometry analyses. Currently, identification of compounds is usually based on the measurement of the accurate mass and fragmentation spectrum, chromatographic elution time, and collisional cross section. Unfortunately, despite the growth of databases of experimentally measured MS/MS spectra (such as MzCloud and Metlin) and developing software for predicting MS/MS fragments in silico from SMILES patterns (such as MetFrag, CFM-ID, and Ms-Finder), the problem of identification is still unsolved. The major issue is that the elution time and fragmentation spectra depend considerably on the equipment used and are not the same for different LC-MS systems. It means that any additional descriptors depending only on the structure of the chemical compound will be of big help for LC-MS/MS-based omics. Our approach is based on the characterization of compounds by the number of labile hydrogen and oxygen atoms in the molecule, which can be measured using hydrogen/deuterium and 16O/18O-exchange approaches. The number of labile atoms (those from -OH, -NH, ═O, and -COOH groups) can be predicted from SMILES patterns and serves as an additional structural descriptor when performing a database search. In addition, distribution of isotope labels among MS/MS fragments can be roughly predicted by software such as MetFrag or CFM-ID. Here, we present an approach utilizing the selection of structural candidates from a database on the basis of the number of functional groups and analysis of isotope labels distribution among fragments. It was found that our approach allows reduction of the search space by a factor of 10 and considerably increases the reliability of the compound identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucfer完成签到 ,获得积分10
刚刚
刚刚
ZephyrZY发布了新的文献求助10
刚刚
wy.he应助葡萄丸子采纳,获得10
1秒前
科研通AI5应助葡萄丸子采纳,获得10
1秒前
欢喜小蚂蚁完成签到 ,获得积分10
1秒前
Hello应助tianliyan采纳,获得10
1秒前
moon发布了新的文献求助10
1秒前
黄可以发布了新的文献求助10
2秒前
yuiaa完成签到,获得积分10
2秒前
烟花应助清风采纳,获得10
3秒前
lllllcc发布了新的文献求助10
3秒前
科目三应助shenme采纳,获得10
3秒前
suite发布了新的文献求助10
4秒前
wsb76完成签到,获得积分10
4秒前
超帅的岱周完成签到,获得积分10
5秒前
5秒前
ZephyrZY完成签到,获得积分10
6秒前
靓丽丹彤发布了新的文献求助10
6秒前
。。完成签到,获得积分10
6秒前
lucky完成签到,获得积分10
7秒前
Hello应助直率的问筠采纳,获得10
7秒前
Y柒完成签到,获得积分10
7秒前
8秒前
8秒前
李健应助PigaChu采纳,获得10
8秒前
可爱的函函应助Cyber_relic采纳,获得10
9秒前
meng发布了新的文献求助10
9秒前
dll完成签到 ,获得积分10
9秒前
9秒前
lxy7721完成签到,获得积分10
10秒前
气945完成签到,获得积分10
10秒前
10秒前
11秒前
加特林发布了新的文献求助10
11秒前
淡然幻然发布了新的文献求助10
11秒前
迅速思萱完成签到,获得积分10
11秒前
11秒前
wyu完成签到,获得积分10
12秒前
木木发布了新的文献求助10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809666
求助须知:如何正确求助?哪些是违规求助? 3354199
关于积分的说明 10369198
捐赠科研通 3070451
什么是DOI,文献DOI怎么找? 1686263
邀请新用户注册赠送积分活动 810875
科研通“疑难数据库(出版商)”最低求助积分说明 766424