空化
成核
过饱和度
化学物理
粒子(生态学)
气泡
沸腾
悬挂(拓扑)
材料科学
激发态
吸附
原子物理学
化学
机械
物理
热力学
物理化学
地质学
同伦
海洋学
纯数学
数学
作者
Adrien Bussonnière,Qingxia Liu,Peichun Amy Tsai
标识
DOI:10.1103/physrevlett.124.034501
摘要
Bubble nucleation in water induced by boiling, gas supersaturation, or cavitation usually originates from preexisting gas cavities trapped into solid defects. Even though the destabilization of such gas pockets, called nuclei, has been extensively studied, little is known on the nuclei dynamic. Here, nuclei of water-particle suspensions are excited by acoustic cavitation, and their dynamic is investigated by monitoring the cavitation probability over several thousand pulses. A stable and reproducible cavitation probability emerges after a few thousand pulses and depends on particle concentration, hydrophobicity, and dissolved gas content. Our observations indicate that a stable nuclei distribution is reached at a later time, different from previously reported nuclei depletion in early time. This apparent paradox is elucidated by varying the excitation rate, where the cavitation activity increases with the repetition period, indicating that the nuclei depletion is balanced by spontaneous nucleation or growth of nuclei. A model of this self-supporting generation of nuclei suggests an origin from dissolved gas adsorption on surfaces. The method developed can be utilized to further understand the spontaneous formation and distribution of nanosized bubbles on heterogeneous surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI