Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption

吸附 生物炭 废水 化学 活性炭 污水处理 材料科学 生物系统 四环素 环境化学 抗生素 环境科学 环境工程 有机化学 热解 生物 生物化学
作者
Xinzhe Zhu,Zhonghao Wan,Daniel C.W. Tsang,Mingjing He,Deyi Hou,Zhishan Su,Jin Shang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:406: 126782-126782 被引量:237
标识
DOI:10.1016/j.cej.2020.126782
摘要

Abstract Antibiotics as emerging pollutants have attracted extensive attention due to their ecotoxicity and persistence in the environment. Adsorption of antibiotics on carbon-based materials (CBMs) such as biochar and activated carbon was recognized as one of the most promising technologies for wastewater treatment. This study applied machine learning (ML) methods to develop generic prediction models of tetracycline (TC) and sulfamethoxazole (SMX) adsorption on CBMs. The results suggested that random forest outperformed gradient boosting trees and artificial neural network for both TC and SMX adsorption models. The random forest models could accurately predict the adsorption capacity of antibiotics on CBMs using material properties and adsorption conditions as model inputs. The developed ML models presented better generalization ability than traditional isotherm models under variable environmental conditions (e.g., temperature, solution pH) and adsorbent types. The relative importance analysis and partial dependence plots based on ML models were performed to compare TC and SMX adsorption on CBMs. The results indicated the critical role of specific surface area for both TC (24%) and SMX (45%) adsorption, while the other material properties (e.g., H/C, (O + N)/C, pHpzc) showed variable influences due to the differences in molecular structures, functional groups, and pKa values of TC and SMX. The accurate ML prediction models with generalization ability are useful for designing efficient CBMs with minimal experimental screening, while the relative importance and partial dependence plot analysis can guide rational applications of CBMs for antibiotics wastewater treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香草吧噗完成签到 ,获得积分10
刚刚
科研通AI6应助黑马王子采纳,获得30
刚刚
EE关闭了EE文献求助
1秒前
1秒前
2秒前
yy完成签到,获得积分10
2秒前
2秒前
研友_8RlG1n发布了新的文献求助10
3秒前
歪比八不发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
小泉完成签到,获得积分10
5秒前
6秒前
joshar发布了新的文献求助10
6秒前
6秒前
LL完成签到,获得积分10
7秒前
科研通AI6应助liu采纳,获得10
8秒前
魏林娟完成签到,获得积分20
8秒前
9秒前
wendy完成签到,获得积分10
10秒前
BJ123完成签到,获得积分10
10秒前
vv完成签到 ,获得积分10
10秒前
CodeCraft应助辛勤易真采纳,获得10
10秒前
吾系渣渣辉完成签到 ,获得积分10
11秒前
Liuruijia发布了新的文献求助10
12秒前
丘比特应助sunny采纳,获得10
12秒前
秦玉完成签到,获得积分20
13秒前
Hhhhhhhhhh发布了新的文献求助10
13秒前
思源应助陈文娜采纳,获得10
13秒前
13秒前
荔枝酱果冻完成签到,获得积分10
14秒前
噼里啪啦发布了新的文献求助10
14秒前
15秒前
Huzhu应助ysxl采纳,获得10
15秒前
流苏完成签到,获得积分10
15秒前
oldblack完成签到,获得积分10
16秒前
Harden完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
CC发布了新的文献求助10
17秒前
Grace159完成签到 ,获得积分10
17秒前
Summering666完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244