遥感
土地覆盖
软件
计算机科学
卫星
云量
数据挖掘
云计算
数据库
环境科学
中国
一致性(知识库)
分类器(UML)
地图学
文件格式
卫星图像
数据存档
地理
气象学
归一化差异植被指数
数据文件
随机森林
地球观测卫星
地球观测
像素
数据收集
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
日期:2025-07-10
标识
DOI:10.5281/zenodo.15853565
摘要
Using 335,709 Landsat images on the Google Earth Engine, we built the first Landsat-derived annual land cover product of China (CLCD) from 1985 to 2019. We collected the training samples by combining stable samples extracted from China's Land-Use/Cover Datasets (CLUD), and visually-interpreted samples from satellite time-series data, Google Earth and Google Map. Several temporal metrics were constructed via all available Landsat data and fed to the random forest classifier to obtain classification results. A post-processing method incorporating spatial-temporal filtering and logical reasoning was further proposed to improve the spatial-temporal consistency of CLCD. "*_albert.tif" are projected files via a proj4 string "+proj=aea +lat_1=25 +lat_2=47 +lat_0=0 +lon_0=105 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs". CLCD in 2024 is now available. 1. Given that the USGS no longer maintains the Landsat Collection 1 data, we are now using the Collection 2 SR data to update the CLCD. 2. All files in this version have been exported as Cloud Optimized GeoTIFF for more efficient processing on the cloud. Please check here for more details. 3. Internal overviews and color tables are built into each file to speed up software loading and rendering.
科研通智能强力驱动
Strongly Powered by AbleSci AI