光致发光
有机发光二极管
材料科学
热稳定性
电致发光
发光
溶解度
碘化物
铜
光化学
光电子学
物理化学
化学
纳米技术
无机化学
有机化学
冶金
图层(电子)
作者
Daniel Volz,Daniel M. Zink,Tobias Bocksrocker,Jana Friedrichs,Martin Nieger,Thomas Baumann,Uli Lemmer,Stefan Bräse
摘要
Organic light-emitting diodes (OLEDs) are currently being commercialized for lighting and display applications, but more work has to be done. In addition to the ongoing optimization of materials and devices in terms of efficiency and lifetime, the substitution of processing steps involving vacuum deposition for solution processing techniques is favorable. To reach this aim, good soluble materials are required. A modular family of highly emissive PyrPHOS-copper iodide complexes featuring various ancillary phosphine ligands has been synthesized. Photoluminescence spectroscopy, TCSPC (time-correlated single photon counting), cyclic voltammetry, X-ray diffraction, and DFT calculations were performed to gain a broad understanding of the complexes. While the photophysical properties are consistent within the family, thermal stability and solubility depend on the ligands. The materials showed very high photoluminescence quantum efficiencies up to 99% in powders and 85% in thin films. Selected examples were tested in devices, confirming the suitability of heteroleptic PyrPHOS-complexes for OLEDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI