纳米流体
热导率
材料科学
传热
纳米技术
纳米材料
纳米颗粒
热力学
复合材料
物理
作者
S. A. Angayarkanni,John Philip
标识
DOI:10.1016/j.cis.2015.08.014
摘要
Nanofluids are dispersions of nanomaterials (e.g. nanoparticles, nanofibers, nanotubes, nanowires, nanorods, nanosheet, or droplets) in base fluids. Nanofluids have been a topic of great interest during the last one decade primarily due to the initial reports of anomalous thermal conductivity (k) enhancement in nanofluids with a small percentage of nanoparticles. This field has been quite controversial, with multiple reports of anomalous enhancement in thermal conductivity and many other reports of the thermal conductivity increase within the classical Maxwell mixing model. Several mechanisms have been proposed for explaining the observed enhancement in thermal conductivity. The role of Brownian motion, interfacial resistance, morphology of suspended nanoparticles and aggregating behavior is investigated both experimentally and theoretically. As the understanding of specific heat capacity of nanofluids is a prerequisite for their effective utilization in heat transfer applications, it is also investigated by many researchers. From the initial focus on thermophysical properties of nanofluids, the attention is now shifted to tailoring of novel nanofluids with large thermal conductivities. Further, to overcome the limitations of traditional heat transfer media, phase change materials (PCMs) and hybrid nanofluids are being developed as effective media for thermal energy storage. This review focuses the recent progress in nanofluids research from a heat transfer perspective. Emphasis is given for the latest work on thermal properties of nanofluids, phase change materials and hybrid nanofluids. The preparation of nanofluids by various techniques, methods of stabilization, stability measurement techniques, thermal conductivity and heat capacity studies, proposed mechanisms of heat transport, theoretical models on thermal conductivity, factors influencing k and the effect of nanoinclusions in PCM are discussed in this review. Sufficient background information is also provided for the beginners.
科研通智能强力驱动
Strongly Powered by AbleSci AI