MADS箱
生物
牵牛花
异位表达
基因
植物
基因表达
拟南芥
遗传学
突变体
作者
Silvia Ferrario,Jacqueline Busscher,John Franken,Tom Gerats,Michiel Vandenbussche,Gerco C. Angenent,Richard G. H. Immink
出处
期刊:The Plant Cell
[Oxford University Press]
日期:2004-06-01
卷期号:16 (6): 1490-1505
被引量:90
摘要
Abstract Several genes belonging to the MADS box transcription factor family have been shown to be involved in the transition from vegetative to reproductive growth. The Petunia hybrida MADS box gene UNSHAVEN (UNS) shares sequence similarity with the Arabidopsis thaliana flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1, is expressed in vegetative tissues, and is downregulated upon floral initiation and the formation of floral meristems. To understand the role of UNS in the flowering process, knockout mutants were identified and UNS was expressed ectopically in petunia and Arabidopsis. No phenotype was observed in petunia plants in which UNS was disrupted by transposon insertion, indicating that its function is redundant. Constitutive expression of UNS leads to an acceleration of flowering and to the unshaven floral phenotype, which is characterized by ectopic trichome formation on floral organs and conversion of petals into organs with leaf-like features. The same floral phenotype, accompanied by a delay in flowering, was obtained when a truncated version of UNS, lacking the MADS box domain, was introduced. We demonstrated that the truncated protein is not translocated to the nucleus. Using the overexpression approach with both the full-length and the nonfunctional truncated UNS protein, we could distinguish between phenotypic alterations because of a dominant-negative action of the protein and because of its native function in promoting floral transition.
科研通智能强力驱动
Strongly Powered by AbleSci AI