Comparison of Dynamic Contrast‐Enhanced MRI and Non‐Mono‐Exponential Model‐Based Diffusion‐Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics

乳腺癌 医学 接收机工作特性 磁共振弥散成像 无线电技术 有效扩散系数 磁共振成像 逻辑回归 乳房磁振造影 动态对比度 动态增强MRI 核医学 放射科 癌症 内科学 乳腺摄影术
作者
Lan Zhang,Xin‐Xiang Zhou,Lu Liu,A Liu,Wenjuan Zhao,Hong‐Xia Zhang,Yuemin Zhu,Zi‐Xiang Kuai
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1590-1602 被引量:14
标识
DOI:10.1002/jmri.28611
摘要

Dynamic contrast-enhanced (DCE) MRI and non-mono-exponential model-based diffusion-weighted imaging (NME-DWI) that does not require contrast agent can both characterize breast cancer. However, which technique is superior remains unclear.To compare the performances of DCE-MRI, NME-DWI and their combination as multiparametric MRI (MP-MRI) in the prediction of breast cancer prognostic biomarkers and molecular subtypes based on radiomics.Prospective.A total of 477 female patients with 483 breast cancers (5-fold cross-validation: training/validation, 80%/20%).A 3.0 T/DCE-MRI (6 dynamic frames) and NME-DWI (13 b values).After data preprocessing, high-throughput features were extracted from each tumor volume of interest, and optimal features were selected using recursive feature elimination method. To identify ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, Ki-67+ vs. Ki-67-, luminal A/B vs. nonluminal A/B, and triple negative (TN) vs. non-TN, the following models were implemented: random forest, adaptive boosting, support vector machine, linear discriminant analysis, and logistic regression.Student's t, chi-square, and Fisher's exact tests were applied on clinical characteristics to confirm whether significant differences exist between different statuses (±) of prognostic biomarkers or molecular subtypes. The model performances were compared between the DCE-MRI, NME-DWI, and MP-MRI datasets using the area under the receiver-operating characteristic curve (AUC) and the DeLong test. P < 0.05 was considered significant.With few exceptions, no significant differences (P = 0.062-0.984) were observed in the AUCs of models for six classification tasks between the DCE-MRI (AUC = 0.62-0.87) and NME-DWI (AUC = 0.62-0.91) datasets, while the model performances on the two imaging datasets were significantly poorer than on the MP-MRI dataset (AUC = 0.68-0.93). Additionally, the random forest and adaptive boosting models (AUC = 0.62-0.93) outperformed other three models (AUC = 0.62-0.90).NME-DWI was comparable with DCE-MRI in predictive performance and could be used as an alternative technique. Besides, MP-MRI demonstrated significantly higher AUCs than either DCE-MRI or NME-DWI.2.Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mp5完成签到,获得积分10
刚刚
浮游应助小黄采纳,获得10
刚刚
hh完成签到,获得积分10
1秒前
m1343513037发布了新的文献求助10
2秒前
文静的涑完成签到,获得积分10
3秒前
杨硕士发布了新的文献求助10
4秒前
5秒前
虫虫冲呀冲完成签到,获得积分10
5秒前
5秒前
拼了完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助paradise采纳,获得30
7秒前
dm完成签到,获得积分10
7秒前
203发布了新的文献求助10
9秒前
Jasper应助leoott采纳,获得10
10秒前
687发布了新的文献求助10
10秒前
大橘发布了新的文献求助10
11秒前
果子完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
13秒前
告6人完成签到 ,获得积分10
13秒前
dddd完成签到,获得积分10
14秒前
sjcxin发布了新的文献求助10
16秒前
xiaozhao完成签到,获得积分10
16秒前
zytz发布了新的文献求助20
16秒前
bkagyin应助追寻凌青采纳,获得10
17秒前
顾矜应助li采纳,获得10
17秒前
爱撒娇的大白菜真实的钥匙完成签到,获得积分10
17秒前
夏子发布了新的文献求助10
17秒前
17秒前
_蝴蝶小姐发布了新的文献求助10
19秒前
19秒前
木木心田发布了新的文献求助50
19秒前
20秒前
潇潇发布了新的文献求助10
20秒前
HJJ完成签到,获得积分10
22秒前
追寻宛海完成签到 ,获得积分20
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051577
求助须知:如何正确求助?哪些是违规求助? 4278851
关于积分的说明 13337718
捐赠科研通 4094101
什么是DOI,文献DOI怎么找? 2240783
邀请新用户注册赠送积分活动 1247258
关于科研通互助平台的介绍 1176413