Prediction of drug-likeness using graph convolutional attention network

计算机科学 图形 药物发现 药品 化学空间 人工智能 机器学习 化学相似性 数据挖掘 理论计算机科学 生物信息学 药理学 结构相似性 医学 生物
作者
Jinyu Sun,Ming Wen,Huabei Wang,Yuezhe Ruan,Qiong Yang,Xiao Kang,Hailiang Zhang,Zhimin Zhang,Hongmei Lü
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (23): 5262-5269 被引量:15
标识
DOI:10.1093/bioinformatics/btac676
摘要

Abstract Motivation The drug-likeness has been widely used as a criterion to distinguish drug-like molecules from non-drugs. Developing reliable computational methods to predict the drug-likeness of compounds is crucial to triage unpromising molecules and accelerate the drug discovery process. Results In this study, a deep learning method was developed to predict the drug-likeness based on the graph convolutional attention network (D-GCAN) directly from molecular structures. Results showed that the D-GCAN model outperformed other state-of-the-art models for drug-likeness prediction. The combination of graph convolution and attention mechanism made an important contribution to the performance of the model. Specifically, the application of the attention mechanism improved accuracy by 4.0%. The utilization of graph convolution improved the accuracy by 6.1%. Results on the dataset beyond Lipinski’s rule of five space and the non-US dataset showed that the model had good versatility. Then, the billion-scale GDB-13 database was used as a case study to screen SARS-CoV-2 3C-like protease inhibitors. Sixty-five drug candidates were screened out, most substructures of which are similar to these of existing oral drugs. Candidates screened from S-GDB13 have higher similarity to existing drugs and better molecular docking performance than those from the rest of GDB-13. The screening speed on S-GDB13 is significantly faster than screening directly on GDB-13. In general, D-GCAN is a promising tool to predict the drug-likeness for selecting potential candidates and accelerating drug discovery by excluding unpromising candidates and avoiding unnecessary biological and clinical testing. Availability and implementation The source code, model and tutorials are available at https://github.com/JinYSun/D-GCAN. The S-GDB13 database is available at https://doi.org/10.5281/zenodo.7054367. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助fanssw采纳,获得10
3秒前
大个应助TW采纳,获得10
4秒前
小事完成签到 ,获得积分10
7秒前
8秒前
gyh发布了新的文献求助10
12秒前
李爱国应助fanssw采纳,获得10
14秒前
杨枝云发布了新的文献求助10
16秒前
阿尼完成签到 ,获得积分10
18秒前
酒温书生完成签到,获得积分10
19秒前
先锋完成签到 ,获得积分10
21秒前
所所应助gyh采纳,获得10
23秒前
maxinyu完成签到 ,获得积分10
26秒前
Hello应助fanssw采纳,获得10
26秒前
科研狗的春天完成签到 ,获得积分10
29秒前
30秒前
摸鱼人完成签到,获得积分10
31秒前
华子的五A替身完成签到,获得积分10
34秒前
田様应助fanssw采纳,获得10
37秒前
37秒前
NexusExplorer应助风趣青槐采纳,获得10
38秒前
常常完成签到 ,获得积分10
39秒前
41秒前
45秒前
ywindm完成签到,获得积分10
46秒前
完美世界应助科研通管家采纳,获得10
48秒前
风趣青槐发布了新的文献求助10
48秒前
CipherSage应助fanssw采纳,获得10
49秒前
或无情完成签到 ,获得积分10
54秒前
八百标兵完成签到,获得积分10
54秒前
北国雪未消完成签到 ,获得积分10
55秒前
早日毕业完成签到 ,获得积分10
58秒前
Ava应助fanssw采纳,获得10
1分钟前
徐新雨完成签到 ,获得积分10
1分钟前
顾矜应助杨枝云采纳,获得10
1分钟前
小小咸鱼完成签到 ,获得积分10
1分钟前
1分钟前
所所应助马季采纳,获得30
1分钟前
gyh发布了新的文献求助10
1分钟前
岁月如歌完成签到 ,获得积分0
1分钟前
慕青应助fanssw采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774490
求助须知:如何正确求助?哪些是违规求助? 4107380
关于积分的说明 12704969
捐赠科研通 3828308
什么是DOI,文献DOI怎么找? 2111991
邀请新用户注册赠送积分活动 1135950
关于科研通互助平台的介绍 1019463