ImmuProgML: machine learning-based dissection of cancer-immune dynamics during tumor progression to improve immunotherapy

免疫疗法 黑色素瘤 癌症免疫疗法 免疫系统 癌症 生物标志物 医学 肿瘤进展 肿瘤科 生物信息学 癌症研究 免疫学 内科学 生物 生物化学
作者
Hanxiao Zhou,Lan Mei,Qianyi Lu,Yakun Zhang,Yue Sun,Caiyu Zhang,Han Jiang,Jiajun Zhou,Xia Li,Xia Li,Shangwei Ning
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12967-025-06872-x
摘要

Cancer progression involves distinct stages, with a critical tipping point marking the transition from early to advanced phases, driven by complex tumor-immune dynamics. While immunotherapy has significantly improved outcomes, current biomarker models lack integration of cancer-immune interactions and progression dynamics. Leveraging advances in machine learning, there is an urgent need for a comprehensive framework to systematically analyze these dynamics, predict immunotherapy responses, and improve patient outcomes. We developed ImmuProgML framework by integrating multi-omics data and dynamic network biomarker (DNB) analysis to identify key pathways and critical stages in cancer progression, tested in melanoma and non-small cell lung cancer (NSCLC). We introduced the DNEX score, which combines expression changes with immunotherapy-driven network topologies, and employed machine learning algorithms for prognostic and immunotherapy response predictions. We utilized molecular docking to identify potential therapeutic targets and drug candidates. ImmuProgML pinpointed tipping points at stage III for melanoma and stage II for NSCLC, characterized by accelerated disease progression, significant survival differences, heightened DNA damage repair mechanisms, and enhanced immune responses, with lymph nodes as pivotal hubs. By introducing the DNEX score, an integrative metric combining differential expression and network analysis, ImmuProgML evaluated gene immunomodulation activity during tumor progression and identified immunotherapy targets. High DNEX score correlated with immune-related pathways, including T cell activation and PD1 signaling, in melanoma and NSCLC. Using DNEX score, 62 machine learning models were integrated to create DNEX-SM, which predicted immunotherapy prognosis in melanoma with a C-index of 0.69, a perfect 3-year survival AUC of 1.0 in the GSE78220 dataset, and an AUC of 0.94 in the VanAllen_Science_2015 dataset, outperforming 35 published signatures. DNEX-RM, another immunotherapy response classifier within ImmuProgML, achieved an F1 score of 81.91% and AUCs of 0.912 in training, 0.877 in cross-validation, and 0.749 in testing, with an average AUC improvement of 0.053 across three datasets compared to other methods. Furthermore, DNEX ranking and molecular docking analysis identified four potent protein-drug pairs with strong binding affinities and unique binding pockets: CXCR4 with PIK-93, LCK with PAC-1, PRKCB with SNX-2112, and PRKCB with PIK-93. ImmuProgML offers a promising avenue for understanding the intricate relationship between tumors and the immune system, providing a machine learning framework for personalized cancer immunotherapy selections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒适新蕾完成签到,获得积分10
刚刚
lux完成签到,获得积分10
刚刚
linkman应助qingniujushi采纳,获得10
刚刚
1秒前
2秒前
wxnice发布了新的文献求助10
3秒前
伟@完成签到,获得积分10
3秒前
4秒前
916应助wang采纳,获得10
4秒前
5秒前
Ternura发布了新的文献求助20
5秒前
zhouyi完成签到 ,获得积分10
6秒前
酷波er应助贝塔采纳,获得10
6秒前
7秒前
酷波er应助micolaa采纳,获得10
7秒前
下午四点半应助guozizi采纳,获得10
7秒前
8秒前
Lian完成签到,获得积分10
10秒前
11秒前
hlm发布了新的文献求助10
11秒前
易大人完成签到 ,获得积分10
12秒前
十一月发布了新的文献求助10
12秒前
Lucas应助xuedistance采纳,获得10
12秒前
小小菜鸟完成签到,获得积分10
13秒前
冰淇淋完成签到 ,获得积分10
14秒前
14秒前
小小熊发布了新的文献求助10
14秒前
马汉仓完成签到,获得积分10
14秒前
核桃发布了新的文献求助10
15秒前
123完成签到 ,获得积分20
17秒前
小小菜鸟发布了新的文献求助10
17秒前
17秒前
小人物的坚持完成签到 ,获得积分10
17秒前
小居居完成签到,获得积分10
18秒前
18秒前
19秒前
FRIGHTINGx完成签到 ,获得积分10
20秒前
Hello应助无敌龙傲天采纳,获得10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4373454
求助须知:如何正确求助?哪些是违规求助? 3870456
关于积分的说明 12064880
捐赠科研通 3513149
什么是DOI,文献DOI怎么找? 1927900
邀请新用户注册赠送积分活动 969719
科研通“疑难数据库(出版商)”最低求助积分说明 868525