亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mean arterial pressure is all you need in a machine learning model for mean arterial pressure prediction

医学 接收机工作特性 平均动脉压 血压 回顾性队列研究 人工智能 观察研究 机器学习 急诊医学 内科学 计算机科学 心率
作者
Thomas Tschoellitsch,Sophie Kaltenleithner,Alexander Maletzky,Philipp Moser,Philipp Seidl,Carl Böck,Stefan Thumfart,Michael Giretzlehner,Sepp Hochreiter,Jens Meier
出处
期刊:European Journal of Anaesthesiology [Lippincott Williams & Wilkins]
卷期号:42 (12): 1112-1122
标识
DOI:10.1097/eja.0000000000002238
摘要

BACKGROUND Anaesthesiology and intensive care use monitoring to identify patients in danger of deterioration. Traditionally, trends and early warning scores allow clinicians to predict deterioration with moderate reliability. Reduced mean arterial blood pressure has been associated with complications, and models have been sought to predict its value. Machine learning methods with complex inputs have been used for predictive monitoring in hospital care. OBJECTIVES This study evaluates whether machine learning can predict mean arterial pressure (MAP) from previous values. DESIGN This is a monocentre, retrospective, exploratory, observational cohort study using the MIMIC-III-WDB, VitalDB and an internal study centre dataset, training machine learning models on adult patients with invasively measured blood pressure (IBP) as input during an observation window up to 20 min before the prediction horizon (5 to 20 min). SETTING Kepler University Hospital, Linz, Austria. PARTICIPANTS Two thousand three hundred and forty-six patients from the internal dataset, 4741 patients from MIMIC-III-WDB and 3357 patients from VitalDB were analysed. MAIN OUTCOME MEASURES The primary endpoint was model performance in predicting whether MAP would fall below 65 mmHg in a given time frame. In a secondary analysis, we restricted the input set to stable patients with current MAP above 65 mmHg. RESULTS Models using the complete training data achieved receiver operating characteristic area under the curves (ROC AUCs) of 0.963, 0.946, 0.934 and 0.923 on the internal dataset for 5, 10, 15 and 20 min of prediction horizon, respectively, and 0.856, 0.837, 0.821 and 0.804 in the secondary analysis. The maximum difference of ROC AUC to baseline measurement (ROC AUC of last measured MAP as trivial estimator) was 0.006 for the complete training data and 0.051 for stable patients. The prediction of MAP may allow clinicians to intervene in time before MAP deterioration becomes clinically relevant. CONCLUSION Predicting MAP below 65 mmHg within 5, 10, 15 and 20 min for patients with and without a MAP above 65 mmHg is possible and requires only MAP as input for machine learning models. TRIAL REGISTRATION ClinicalTrials.gov (NCT05471193)

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
2秒前
叙温雨发布了新的文献求助10
5秒前
搜集达人应助叙温雨采纳,获得10
36秒前
执着的香薇完成签到 ,获得积分10
41秒前
54秒前
cc发布了新的文献求助10
58秒前
dynamoo应助guan采纳,获得30
1分钟前
1分钟前
叙温雨发布了新的文献求助10
1分钟前
陈词丶发布了新的文献求助10
1分钟前
CCccCCC完成签到,获得积分20
1分钟前
1分钟前
CCccCCC发布了新的文献求助10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
小猫多鱼发布了新的文献求助30
1分钟前
1分钟前
鹌鹑发布了新的文献求助10
1分钟前
慕青应助呜呼采纳,获得10
1分钟前
2分钟前
2分钟前
月球下的人完成签到,获得积分10
2分钟前
cc完成签到,获得积分20
2分钟前
FashionBoy应助月球下的人采纳,获得10
2分钟前
香蕉觅云应助芝士采纳,获得10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
2分钟前
3分钟前
黑摄会阿Fay完成签到,获得积分10
3分钟前
酒渡完成签到,获得积分10
3分钟前
lsl完成签到 ,获得积分10
3分钟前
henry完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
苦瓜大王完成签到 ,获得积分10
3分钟前
文欣完成签到 ,获得积分0
3分钟前
3分钟前
大胆面包完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291706
求助须知:如何正确求助?哪些是违规求助? 4442649
关于积分的说明 13830222
捐赠科研通 4325779
什么是DOI,文献DOI怎么找? 2374461
邀请新用户注册赠送积分活动 1369766
关于科研通互助平台的介绍 1334072