清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Investigating the Robustness of Graph Neural Networks to Data Drift: A Case Study on Financial Transaction Data

作者
R. Menezes,Raimir Holanda Filho
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 164302-164312
标识
DOI:10.1109/access.2025.3611817
摘要

The performance of machine learning models in real-world applications is often challenged by data drift, in which the statistical properties of the data evolve over time. This phenomenon is particularly acute in dynamic domains such as financial fraud detection, where adversarial behaviors constantly change. Graph Neural Networks (GNNs), valued for their ability to model complex relational data, are increasingly applied in this domain; however, their inherent robustness to temporal data shifts remains underexplored. This study systematically investigates the impact of natural data drift on the robustness of three foundational GNN architectures: Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and Graph Sample and Aggregate (GraphSAGE). Using the large-scale and highly imbalanced IEEE-CIS dataset as a challenging case study, we constructed homogeneous transaction graphs and employed a strict temporal data splitting methodology to simulate a realistic deployment scenario. Model performance was evaluated over 50 sequential, nonoverlapping monitoring windows, using AUC-PR and F2-Score as primary metrics due to their sensitivity in imbalanced contexts. Our findings confirm that all evaluated GNNs suffer from significant performance degradation over time, with GCN and GAT showing pronounced declines. A comparative analysis revealed that GraphSAGE exhibited substantially greater robustness, maintaining more stable and resilient performance. These results highlight that architectural choice is a critical factor for GNNs deployed in dynamic environments and underscore the need to develop adaptive strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
as完成签到 ,获得积分10
5秒前
梦游菌完成签到 ,获得积分10
6秒前
失眠的访枫完成签到 ,获得积分10
11秒前
tmobiusx完成签到,获得积分10
12秒前
姚芭蕉完成签到 ,获得积分0
23秒前
殷勤的紫槐应助科研通管家采纳,获得200
30秒前
31秒前
江三村完成签到 ,获得积分0
45秒前
紫荆完成签到 ,获得积分10
1分钟前
bajiu完成签到 ,获得积分10
1分钟前
热带蚂蚁完成签到 ,获得积分10
1分钟前
YYY完成签到,获得积分10
1分钟前
大模型应助liaodongjun采纳,获得30
1分钟前
coding完成签到,获得积分10
1分钟前
baiye完成签到,获得积分10
1分钟前
CC完成签到,获得积分10
1分钟前
六一儿童节完成签到 ,获得积分0
2分钟前
HOAN完成签到 ,获得积分0
2分钟前
2分钟前
liaodongjun发布了新的文献求助30
2分钟前
naczx完成签到,获得积分0
2分钟前
guoguo1119完成签到 ,获得积分10
2分钟前
刘辰完成签到 ,获得积分10
2分钟前
Owen应助xhemers采纳,获得30
2分钟前
抗体药物偶联完成签到,获得积分10
2分钟前
2分钟前
xhemers发布了新的文献求助30
3分钟前
yong完成签到 ,获得积分10
3分钟前
千帆破浪完成签到 ,获得积分10
3分钟前
砚木完成签到 ,获得积分10
3分钟前
沿途有你完成签到 ,获得积分10
3分钟前
小录完成签到 ,获得积分10
3分钟前
3分钟前
许钟一发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
liaodongjun完成签到,获得积分10
3分钟前
平常念蕾完成签到 ,获得积分10
3分钟前
Heart_of_Stone完成签到 ,获得积分10
4分钟前
善学以致用应助许钟一采纳,获得10
4分钟前
LM完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681981
求助须知:如何正确求助?哪些是违规求助? 5016732
关于积分的说明 15176430
捐赠科研通 4841443
什么是DOI,文献DOI怎么找? 2595256
邀请新用户注册赠送积分活动 1548305
关于科研通互助平台的介绍 1506365