Electric Vehicles Charging Station Load Forecasting Integration With Renewable Energy Using Novel Deep EfficientBiLSTMNet

作者
Vineet Dhanawat,Varun Shinde,Rachid El Alami,Adnan Akhunzada,Zaid Bin Faheem,Anjanava Biswas
出处
期刊:IEEE open journal of vehicular technology [Institute of Electrical and Electronics Engineers]
卷期号:6: 2642-2661
标识
DOI:10.1109/ojvt.2025.3608287
摘要

The exponential increase in the adoption of Electric Vehicles (EVs) presents significant problems to the stability of the power grid. Therefore, it is crucial to accurately anticipate the demand for EV Charging Station (CS) to address this issue. To improve forecasts and identify CS load variables, existing studies are based on load profiling, which may be difficult to obtain for commercial EV charging stations. This paper proposes an efficient deep BiLSTMNet model to solve and mitigate these problems. Energy consumption and storage at four charging stations in California are analyzed. To guarantee accuracy and uniformity, the data is preprocessed by addressing missing values and ensuring consistency. A hybrid feature selection technique integrates the Boruta algorithm and SHAP (SHapley Additive exPlanations) values to ensure robust feature selection. The EfficientBiLSTMNet model, which integrates the EfficientNet and BiLSTM layers, is trained on the preprocessed datasets. The model's hyperparameters are optimized using an Enhanced Firefly Algorithm (EFA). The model performs a time series analysis to identify daily, weekly, monthly, and seasonal patterns in EV charging demand. The integration of renewable energy sources—specifically solar and wind generation—into the EV charging infrastructure is thoroughly examined in this study, not merely as input features but as key factors influencing the stability of charging demand at various stations. Their temporal patterns and environmental dependencies are leveraged to enhance forecasting accuracy and ensure grid-aware demand management across charging stations. The proposed model's performance is evaluated using metrics such as R-squared, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). Simulation results demonstrate the effectiveness of the proposed model, with an average R-squared value of 0.9, MAE of 2.15 kW, and RMSE of 2.75 kW across the four stations. The EfficientBiLSTMNet model shows superior predictive accuracy compared to traditional models, highlighting the importance of comprehensive feature selection and engineering in forecasting EV charging demand. This study provides a robust framework for predicting EV charging demand, integrating renewable energy sources to enhance the stability and sustainability of the power grid amidst the increasing penetration of EVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听葵阴发布了新的文献求助10
刚刚
1秒前
彭于晏应助逗逗豆芽采纳,获得10
2秒前
活泼的河马完成签到 ,获得积分10
2秒前
4秒前
展锋发布了新的文献求助10
4秒前
5秒前
小路发布了新的文献求助10
5秒前
周周发布了新的文献求助10
8秒前
传奇3应助清风揽月采纳,获得10
8秒前
HH发布了新的文献求助10
8秒前
as关闭了as文献求助
9秒前
10秒前
10秒前
脑洞疼应助zhou_zhuoli采纳,获得10
10秒前
又欠发布了新的文献求助10
10秒前
zxrzxr123完成签到,获得积分10
11秒前
Lucas应助笑口常开采纳,获得10
11秒前
飞奔的小田完成签到,获得积分10
11秒前
dingbeicn完成签到,获得积分10
11秒前
zyh发布了新的文献求助10
11秒前
12秒前
甜美的忻发布了新的文献求助10
12秒前
俊逸艳一发布了新的文献求助10
13秒前
JiangShang完成签到,获得积分10
13秒前
Tay应助braving采纳,获得10
13秒前
好运公主发布了新的文献求助10
14秒前
15秒前
15秒前
赘婿应助敏感时光采纳,获得10
16秒前
17秒前
17秒前
wanci应助qq采纳,获得10
18秒前
18秒前
李爱国应助kk采纳,获得10
18秒前
HH完成签到,获得积分10
18秒前
充电宝应助木沐采纳,获得10
20秒前
赴约发布了新的文献求助10
21秒前
21秒前
搜集达人应助啵愣盖子采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308630
求助须知:如何正确求助?哪些是违规求助? 4453704
关于积分的说明 13857839
捐赠科研通 4341445
什么是DOI,文献DOI怎么找? 2383900
邀请新用户注册赠送积分活动 1378533
关于科研通互助平台的介绍 1346495