Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction

计算机科学 全国健康与营养检查调查 队列 体质指数 队列研究 肾脏疾病 机器学习 医学 人工智能 人口 内科学 环境卫生
作者
Jiahui Lai,Cailian Cheng,Tiantian Liang,Leile Tang,Xinyi Guo,Xun Liu
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:23 (1): 921-921 被引量:2
标识
DOI:10.1186/s12967-025-06728-4
摘要

Frailty significantly impacts health outcomes in aging populations, yet its routine assessment remains challenging due to the complexity and time-consuming nature of existing tools. This study aimed to develop and validate a clinically feasible, machine learning-based frailty assessment tool that balances predictive accuracy with implementation simplicity in real-world clinical settings. We conducted a multi-cohort study leveraging data from the National Health and Nutrition Examination Survey (NHANES, n = 3,480), China Health and Retirement Longitudinal Study (CHARLS, n = 16,792), China Health and Nutrition Survey (CHNS, n = 6,035), and Sun Yat-sen University Third Affiliated Hospital CKD cohort (SYSU3 CKD, n = 2,264). Through systematic application of five complementary feature selection algorithms to 75 potential variables, followed by comparative evaluation of 12 machine learning approaches, we developed a parsimonious assessment tool for predicting frailty diagnosis, chronic kidney disease progression, cardiovascular events, and all-cause mortality. Our analysis identified a minimal set of just eight readily available clinical parameters— age, sex, body mass index (BMI), pulse pressure, creatinine, hemoglobin, and preparing meals difficulty and lifting/carrying difficulty—that demonstrated robust predictive power. The extreme gradient boosting (XGBoost) algorithm exhibited superior performance across training (AUC 0.963, 95% CI: 0.951–0.975), internal validation (AUC 0.940, 95% CI: 0.924–0.956), and external validation (AUC 0.850, 95% CI: 0.832–0.868) datasets. This model significantly outperformed traditional frailty indices in predicting CKD progression (AUC 0.916 vs. 0.701, p < 0.001), cardiovascular events (AUC 0.789 vs. 0.708, p < 0.001), and mortality (time-dependent AUC 0.767 − 0.702 vs. 0.690 − 0.627, p < 0.001). SHAP analysis provided transparent insights into model predictions, facilitating clinical interpretation. Our simplified frailty assessment tool demonstrates robust performance across multiple health outcomes while minimizing measurement burden. The model's superior predictive capabilities for CKD progression, cardiovascular events, and mortality underscore its potential utility for risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zeyuan发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
于文志发布了新的文献求助10
1秒前
郝彭凯发布了新的文献求助10
1秒前
活力戾完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
乔乔汀发布了新的文献求助10
2秒前
张张张发布了新的文献求助10
2秒前
kun关闭了kun文献求助
3秒前
sherrymasha完成签到,获得积分10
3秒前
3秒前
serendipity发布了新的文献求助10
4秒前
活力戾发布了新的文献求助10
5秒前
Ava应助殷勤的天亦采纳,获得10
5秒前
Colin完成签到 ,获得积分10
6秒前
元橘发布了新的文献求助10
6秒前
CHEN_ZE_LU完成签到,获得积分20
6秒前
6秒前
pluto应助读书的时候采纳,获得10
7秒前
17OH完成签到,获得积分10
7秒前
7秒前
xue完成签到,获得积分20
7秒前
7秒前
无花果应助xhy采纳,获得10
7秒前
8秒前
一一应助gqwe采纳,获得10
8秒前
小蘑菇应助双儿采纳,获得10
9秒前
爆米花应助秀丽的冰萍采纳,获得10
9秒前
kun关闭了kun文献求助
9秒前
MCY完成签到,获得积分10
9秒前
yaya完成签到,获得积分10
10秒前
材料化学左亚坤完成签到,获得积分10
10秒前
楼十八发布了新的文献求助10
10秒前
GEN完成签到,获得积分20
11秒前
华仔应助王宇采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
11完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5690200
求助须知:如何正确求助?哪些是违规求助? 5077227
关于积分的说明 15201036
捐赠科研通 4848014
什么是DOI,文献DOI怎么找? 2599929
邀请新用户注册赠送积分活动 1551801
关于科研通互助平台的介绍 1510495