EEG-based speech imagery decoding by dynamic hypergraph learning within projected and selected feature subspaces

计算机科学 超图 解码方法 线性子空间 人工智能 子空间拓扑 特征(语言学) 成对比较 模式识别(心理学) 脑-机接口 判决 脑电图 语音识别 算法 数学 精神科 心理学 几何学 语言学 离散数学 哲学
作者
Yibing Li,Zhenye Zhao,Jiangchuan Liu,Yong Peng,Kenneth P. Camilleri,Wanzeng Kong,Andrzej Cichocki
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:22 (4): 046030-046030
标识
DOI:10.1088/1741-2552/adeec8
摘要

Abstract Objective. Speech imagery is a nascent paradigm that is receiving widespread attention in current brain–computer interface (BCI) research. By collecting the electroencephalogram (EEG) data generated when imagining the pronunciation of a sentence or word in human mind, machine learning methods are used to decode the intention that the subject wants to express. Among existing decoding methods, graph is often used as an effective tool to model the data structure; however, in the field of BCI research, the correlations between EEG samples may not be fully characterized by simple pairwise relationships. Therefore, this paper attempts to employ a more effective data structure to model EEG data. Approach. In this paper, we introduce hypergraph to describe the high-order correlations between samples by viewing feature vectors extracted from each sample as vertices and then connecting them through hyperedges. We also dynamically update the weights of hyperedges, the weights of vertices and the structure of the hypergraph in two transformed subspaces, i.e. projected and feature-weighted subspaces. Accordingly, two dynamic hypergraph learning models, i.e. dynamic hypergraph semi-supervised learning within projected subspace (DHSLP) and dynamic hypergraph semi-supervised learning within selected feature subspace (DHSLF), are proposed for speech imagery decoding. Main results. To validate the proposed models, we performed a series of experiments on two EEG datasets. The obtained results demonstrated that both DHSLP and DHSLF have statistically significant improvements in decoding imagined speech intentions to existing studies. Specifically, DHSLP achieved accuracies of 78.40% and 66.64% on the two datasets, while DHSLF achieved accuracies of 71.07% and 63.94%. Significance. Our study indicates the effectiveness of the learned hypergraphs in characterizing the underlying semantic information of imagined contents; besides, interpretable results on quantitatively exploring the discriminative EEG channels in speech imagery decoding are obtained, which lay the foundation for further exploration of the physiological mechanisms during speech imagery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Yankai完成签到,获得积分20
1秒前
1秒前
亵渎完成签到,获得积分10
2秒前
柚子完成签到 ,获得积分10
2秒前
英俊的铭应助留白的大脑采纳,获得10
2秒前
2秒前
修仙中应助www采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
一条蛆完成签到 ,获得积分10
5秒前
荆哲完成签到,获得积分10
5秒前
怡然海云发布了新的文献求助10
6秒前
6秒前
平常的仙人掌完成签到,获得积分10
7秒前
7秒前
白紫寒完成签到 ,获得积分10
7秒前
8秒前
8秒前
小鱼鱼Fish发布了新的文献求助20
8秒前
zz发布了新的文献求助10
8秒前
大羊发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
泡泡脑瓜完成签到,获得积分10
10秒前
小二郎应助小刺猬采纳,获得200
10秒前
10秒前
橘落发布了新的文献求助10
10秒前
谦让的焱完成签到,获得积分10
10秒前
10秒前
烟花应助糖小夕采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262276
求助须知:如何正确求助?哪些是违规求助? 4423286
关于积分的说明 13769277
捐赠科研通 4297943
什么是DOI,文献DOI怎么找? 2358148
邀请新用户注册赠送积分活动 1354541
关于科研通互助平台的介绍 1315696