Feature Selection Based on Weighted Fuzzy Rough Sets

特征选择 模式识别(心理学) 粗集 模糊集 人工智能 特征(语言学) 选择(遗传算法) 计算机科学 数学 模糊逻辑 数据挖掘 语言学 哲学
作者
Changzhong Wang,Changyue Wang,Yuhua Qian,Qiangkui Leng
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (7): 4027-4037 被引量:33
标识
DOI:10.1109/tfuzz.2024.3387571
摘要

Fuzzy rough set approaches have received widespread attention across the disciplines of feature selection and rule extraction. When calculating the fuzzy degree of membership of a sample within a specific class, traditional fuzzy rough sets give precedence to the distance information between the sample and other samples that do not belong to the class, often neglecting the influence of the remoteness of the sample from the specified class. In fact, this calculation strategy limits the discriminability of different samples relative to a given class, which may affect the accuracy and efficiency of feature subset selection. To address the shortcoming, the present study puts forward a new fuzzy rough set approach, weighted fuzzy rough set, which can more accurately measure the correlation and difference between samples relative to the decision class. Based on the distance from a sample to a class, the model first defines the importance of the sample to the class and uses it as a weight to measure the distance between the sample and other samples that do not belong to the class, thereby constructing a more effective fuzzy rough approximation operator. On this basis, a dependency measure between decision variables and conditional attributes is defined to evaluate the importance of candidate features. Then, a concept of discrimination between samples relative to a class is proposed, and the rationality of weighted fuzzy rough set is discussed. Finally, based on weighted fuzzy rough approximation operator, a new algorithm for selecting a subset of features is formulated. Experimental outcomes demonstrate that the algorithm performs well in terms of performance, not only selecting a smaller number of features, but also achieving higher classification accuracy for simplified data, showing its practical application value in feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Desly采纳,获得10
刚刚
SYLH应助tanglu采纳,获得60
1秒前
2秒前
作者完成签到,获得积分10
2秒前
BillowHu发布了新的文献求助10
3秒前
沉静绮彤发布了新的文献求助40
4秒前
科研通AI5应助赵创采纳,获得10
5秒前
5秒前
6秒前
大个应助yaozi采纳,获得10
6秒前
didi发布了新的文献求助30
6秒前
7秒前
Hello应助殷勤的秋荷采纳,获得10
7秒前
高会和发布了新的文献求助10
9秒前
小王完成签到,获得积分20
9秒前
9秒前
9秒前
轩贝完成签到,获得积分10
10秒前
大模型应助Luxuehua采纳,获得30
11秒前
12秒前
sa1t发布了新的文献求助10
12秒前
思源应助给我一块钱采纳,获得10
12秒前
adore发布了新的文献求助30
12秒前
史迪仔发布了新的文献求助20
13秒前
太阳完成签到 ,获得积分10
14秒前
阿西西发布了新的文献求助10
16秒前
传奇3应助嘻嘻采纳,获得10
16秒前
达鸟啊完成签到,获得积分20
16秒前
16秒前
健康的忆寒完成签到,获得积分20
18秒前
无语的沛春完成签到,获得积分10
19秒前
善学以致用应助st采纳,获得10
21秒前
ardejiang发布了新的文献求助10
21秒前
21秒前
mufulee完成签到,获得积分10
22秒前
达鸟啊发布了新的文献求助10
24秒前
阿西西完成签到,获得积分20
24秒前
LH完成签到,获得积分10
24秒前
25秒前
sa1t完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787261
求助须知:如何正确求助?哪些是违规求助? 3332885
关于积分的说明 10257979
捐赠科研通 3048284
什么是DOI,文献DOI怎么找? 1673053
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760287