Feature Selection Based on Weighted Fuzzy Rough Sets

特征选择 模式识别(心理学) 粗集 模糊集 人工智能 特征(语言学) 选择(遗传算法) 计算机科学 数学 模糊逻辑 数据挖掘 语言学 哲学
作者
Changzhong Wang,Changyue Wang,Yuhua Qian,Qiangkui Leng
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (7): 4027-4037 被引量:68
标识
DOI:10.1109/tfuzz.2024.3387571
摘要

Fuzzy rough set approaches have received widespread attention across the disciplines of feature selection and rule extraction. When calculating the fuzzy degree of membership of a sample within a specific class, traditional fuzzy rough sets give precedence to the distance information between the sample and other samples that do not belong to the class, often neglecting the influence of the remoteness of the sample from the specified class. In fact, this calculation strategy limits the discriminability of different samples relative to a given class, which may affect the accuracy and efficiency of feature subset selection. To address the shortcoming, the present study puts forward a new fuzzy rough set approach, weighted fuzzy rough set, which can more accurately measure the correlation and difference between samples relative to the decision class. Based on the distance from a sample to a class, the model first defines the importance of the sample to the class and uses it as a weight to measure the distance between the sample and other samples that do not belong to the class, thereby constructing a more effective fuzzy rough approximation operator. On this basis, a dependency measure between decision variables and conditional attributes is defined to evaluate the importance of candidate features. Then, a concept of discrimination between samples relative to a class is proposed, and the rationality of weighted fuzzy rough set is discussed. Finally, based on weighted fuzzy rough approximation operator, a new algorithm for selecting a subset of features is formulated. Experimental outcomes demonstrate that the algorithm performs well in terms of performance, not only selecting a smaller number of features, but also achieving higher classification accuracy for simplified data, showing its practical application value in feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助xiaoyi采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
囡囝囿团发布了新的文献求助20
2秒前
于清绝完成签到 ,获得积分10
2秒前
2秒前
不丢份马国成完成签到,获得积分10
2秒前
大意的谷云完成签到,获得积分10
3秒前
蔡蔡蔡发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
奕柯发布了新的文献求助10
3秒前
3秒前
4秒前
酷波er应助cldg采纳,获得10
4秒前
tleeny发布了新的文献求助10
4秒前
4秒前
ginaaaaa发布了新的文献求助10
4秒前
4秒前
ljj关闭了ljj文献求助
4秒前
季思锐完成签到,获得积分10
4秒前
852应助RC_Wang采纳,获得10
5秒前
广子发布了新的文献求助10
6秒前
wang发布了新的文献求助10
6秒前
白许四十完成签到,获得积分10
6秒前
6秒前
赵yy应助小香草采纳,获得10
6秒前
小羊发布了新的文献求助10
6秒前
好蓝发布了新的文献求助10
6秒前
Paperduoduo完成签到,获得积分10
6秒前
今后应助zoey采纳,获得10
7秒前
张志杰发布了新的文献求助10
7秒前
8秒前
Lynn发布了新的文献求助10
8秒前
kkk发布了新的文献求助10
8秒前
Anna完成签到,获得积分10
8秒前
小短腿飞行员完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454