Model-Informed Multistage Unsupervised Network for Hyperspectral Image Super-Resolution

高光谱成像 可解释性 计算机科学 深度学习 人工智能 一般化 图像(数学) 多光谱图像 模式识别(心理学) 数据挖掘 数学 数学分析
作者
Jiaxin Li,Ke Zheng,Lianru Gao,Li Ni,Min Huang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:157
标识
DOI:10.1109/tgrs.2024.3391014
摘要

By fusing a low-resolution hyperspectral image (LrMSI) with an auxiliary high-resolution multispectral image (HrMSI), hyperspectral image super-resolution (HISR) can generate a high-resolution hyperspectral image (HrHSI) economically. Despite the promising performance achieved by deep learning (DL), there are still two challenges remaining to be solved. First, most DL-based methods heavily rely on large-scale training triplets, which reduces them to limited generalization and poor practicability in real-world scenarios. Second, existing methods pursue higher performance by designing complex structures from off-the-shelf components while ignoring inherent information from the degradation model, hence leading to insufficient integration of domain knowledge and lower interpretability. To address those drawbacks, we propose a model-informed multi-stage unsupervised network, M2U-Net for short, by leveraging both deep image prior (DIP) and degradation model information. Generally, M2U-Net is built with a three-stage scheme, i.e., degradation information learning (DIL), initialized image establishment (IIE), and deep image generation (DIG) stages. The first stage is to exploit the deep information of the degradation model via a tiny network whose parameters and outputs will serve as guidance for the following two stages. Instead of feeding uninformed noise as input for stage three, IIE stage aims to establish an initialized input with expressive HrHSI-relevant information by resorting to a spectral mapping learning network, thus facilitating the extraction of prior information and further magnifying the potential of DIP for high-quality reconstruction. Last, we propose a dual U-shape network as a powerful regularizer to capture image statistics, in which two U-Nets are coupled together by cross-attention guidance (CAG) module to separately achieve spatial feature extraction and final image generation. The CAG module can incorporate abundant spatial information into the reconstruction process and hence guide the network toward a more plausible generation. Extensive experiments demonstrate the effectiveness of our proposed M2U-Net in terms of quantitative evaluation and visual quality. The code will be available at https://github.com/JiaxinLiCAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助Sir.夏季风采纳,获得10
刚刚
SciGPT应助张延旭采纳,获得10
1秒前
1秒前
桐桐应助昏睡的绿海采纳,获得10
1秒前
科研通AI6应助震甫采纳,获得30
2秒前
2秒前
2秒前
水水吕发布了新的文献求助10
3秒前
gg完成签到,获得积分10
3秒前
修仙梅发布了新的文献求助10
3秒前
可爱的函函应助xixi采纳,获得10
4秒前
4秒前
lxlql11发布了新的文献求助10
4秒前
4秒前
4秒前
华仔应助感动访天采纳,获得10
4秒前
5秒前
飞鸟完成签到,获得积分10
5秒前
欣欣发布了新的文献求助10
5秒前
久别发布了新的文献求助10
5秒前
xudou发布了新的文献求助10
5秒前
kl完成签到,获得积分10
7秒前
坦率的匪举报東東求助涉嫌违规
7秒前
mary完成签到,获得积分20
7秒前
oneming完成签到,获得积分10
7秒前
yyy发布了新的文献求助10
7秒前
7秒前
故意的心情完成签到,获得积分10
7秒前
Hexagram发布了新的文献求助10
8秒前
合适以寒发布了新的文献求助10
8秒前
科研通AI5应助震甫采纳,获得30
8秒前
Lsy发布了新的文献求助20
8秒前
何筱江完成签到,获得积分10
8秒前
GQ发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123096
求助须知:如何正确求助?哪些是违规求助? 4327633
关于积分的说明 13485118
捐赠科研通 4161794
什么是DOI,文献DOI怎么找? 2281027
邀请新用户注册赠送积分活动 1282556
关于科研通互助平台的介绍 1221579