撞车
罗伊特
计算机科学
随机森林
逻辑回归
混合逻辑
阶段(地层学)
计量经济学
数据挖掘
人工智能
机器学习
数学
古生物学
生物
程序设计语言
作者
Jieling Jin,Helai Huang,Yuan Chen,Ye Li,Guoqing Zou,Xue Hongli
标识
DOI:10.1016/j.amar.2023.100306
摘要
Real-time prediction of crash risk is an effective method for enhancing traffic safety, but it is not fully explored in freeway tunnels. A two-stage deep learning modeling framework comprising a preliminary exploration stage and a prediction and analysis stage is proposed for real-time crash risk prediction in freeway tunnels. A random parameters logit model with heterogeneity in means and variances is used in the preliminary exploration stage to investigate the unobserved heterogeneity and influence mechanism of precursors on real-time crash risk. In the prediction and analysis stage, a random deep and cross network model considering feature interactions and unobserved heterogeneities is developed to predict and analyze real-time crash risk, which is interpreted by the shapley additive explanations approach. The multi-source fusion dataset, collected from the Caltrans performance measurement system and the weather information website, is used to validate the proposed framework for exploring real-time crash risk in freeway tunnels. Results reveal that: (1) the random parameters logit model with heterogeneity in means and variances outperforms the traditional logit model in terms of the model fitting, providing a reference for deep learning modeling that may be able to improve model performance by addressing heterogeneity; (2) the important crash precursors such as the average difference in speed between detectors of tunnel entrance and exit are discovered based on the marginal effect analysis of the random parameters logit model with heterogeneity in means and variances; (3) the random deep and cross network model yields the best prediction performance compared to its counterparts (some other data-driven models), demonstrating the superior performance of deep learning models for real-time risk prediction tasks. It also indicates that considering feature interaction and heterogeneity in deep learning modeling can improve prediction performance; and (4) the important precursors found in the random deep and cross network model using the shapley additive explanations approach are close to those discovered in the statistical model, indicating that the proposed deep learning model can capture the similar effects of precursors as the statistical models, and the precursor interactions and heterogeneities also can be observed by the shapley additive explanations approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI