Real-time crash risk prediction in freeway tunnels considering features interaction and unobserved heterogeneity: A two-stage deep learning modeling framework

撞车 罗伊特 计算机科学 随机森林 逻辑回归 混合逻辑 阶段(地层学) 计量经济学 数据挖掘 人工智能 机器学习 数学 古生物学 生物 程序设计语言
作者
Jieling Jin,Helai Huang,Yuan Chen,Ye Li,Guoqing Zou,Xue Hongli
出处
期刊:Analytic Methods in Accident Research [Elsevier]
卷期号:40: 100306-100306 被引量:42
标识
DOI:10.1016/j.amar.2023.100306
摘要

Real-time prediction of crash risk is an effective method for enhancing traffic safety, but it is not fully explored in freeway tunnels. A two-stage deep learning modeling framework comprising a preliminary exploration stage and a prediction and analysis stage is proposed for real-time crash risk prediction in freeway tunnels. A random parameters logit model with heterogeneity in means and variances is used in the preliminary exploration stage to investigate the unobserved heterogeneity and influence mechanism of precursors on real-time crash risk. In the prediction and analysis stage, a random deep and cross network model considering feature interactions and unobserved heterogeneities is developed to predict and analyze real-time crash risk, which is interpreted by the shapley additive explanations approach. The multi-source fusion dataset, collected from the Caltrans performance measurement system and the weather information website, is used to validate the proposed framework for exploring real-time crash risk in freeway tunnels. Results reveal that: (1) the random parameters logit model with heterogeneity in means and variances outperforms the traditional logit model in terms of the model fitting, providing a reference for deep learning modeling that may be able to improve model performance by addressing heterogeneity; (2) the important crash precursors such as the average difference in speed between detectors of tunnel entrance and exit are discovered based on the marginal effect analysis of the random parameters logit model with heterogeneity in means and variances; (3) the random deep and cross network model yields the best prediction performance compared to its counterparts (some other data-driven models), demonstrating the superior performance of deep learning models for real-time risk prediction tasks. It also indicates that considering feature interaction and heterogeneity in deep learning modeling can improve prediction performance; and (4) the important precursors found in the random deep and cross network model using the shapley additive explanations approach are close to those discovered in the statistical model, indicating that the proposed deep learning model can capture the similar effects of precursors as the statistical models, and the precursor interactions and heterogeneities also can be observed by the shapley additive explanations approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉远山发布了新的文献求助10
刚刚
FUNNY发布了新的文献求助10
刚刚
1秒前
风吹而过发布了新的文献求助10
1秒前
火星上访冬完成签到 ,获得积分10
1秒前
Betty完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
格物完成签到,获得积分10
1秒前
2秒前
2980083868发布了新的文献求助10
2秒前
gong完成签到,获得积分10
2秒前
浮游应助是我呀吼采纳,获得10
2秒前
花花发布了新的文献求助10
2秒前
2秒前
mljever完成签到,获得积分10
2秒前
雨好大完成签到 ,获得积分10
3秒前
Cameron发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
7788999完成签到,获得积分10
4秒前
5秒前
5秒前
乐乐应助科研八戒采纳,获得10
5秒前
顺利的妖妖完成签到 ,获得积分10
5秒前
yu完成签到 ,获得积分10
5秒前
tyZhang完成签到,获得积分10
6秒前
6秒前
小蛤蟆完成签到,获得积分10
6秒前
7秒前
老实芯完成签到,获得积分10
7秒前
小灰灰完成签到,获得积分10
7秒前
JABBA完成签到,获得积分10
7秒前
研友_8o5V2n发布了新的文献求助30
7秒前
丘比特应助苹果老三采纳,获得10
7秒前
齐阳春完成签到 ,获得积分10
8秒前
我是老大应助彩虹采纳,获得10
8秒前
幸福的千琴完成签到,获得积分10
9秒前
默默以亦完成签到,获得积分10
9秒前
Aries完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427451
求助须知:如何正确求助?哪些是违规求助? 4541045
关于积分的说明 14175560
捐赠科研通 4458946
什么是DOI,文献DOI怎么找? 2445170
邀请新用户注册赠送积分活动 1436371
关于科研通互助平台的介绍 1413758