电离辐射
辐射
辐射灵敏度
灵敏度(控制系统)
检出限
材料科学
纳米技术
辐照
物理
光学
化学
核物理学
电子工程
色谱法
工程类
作者
Zhiyuan Jin,Zaizai Dong,Xi Zhao,Xinxin Hang,Yiming Lu,Qi Zhang,Hongxia Chen,Zhaocun Huang,Yusen Wang,Gangqiao Zhou,Lingqian Chang
标识
DOI:10.1016/j.bios.2023.115753
摘要
Precise quantification of low-dose ionizing radiation is of great significance in protecting people from damage caused by clinical radiotherapy or environmental radiation. Traditional techniques for detecting radiation, however, remain extreme challenges to achieve high sensitivity and speed in quantifying radiation dosage. In this work, we report a Cas13a-Microdroplet platform that enables sensitive detection of ultra-low doses of radiation (0.5 Gy vs. 1 Gy traditional) within 1 h. The micro-platform adopts an ideal, specific radiation-sensitive marker, m6A on NCOA4 gene (NCOA4-m6A) that was first reported in our recent work. Microfluidics of the platform generate uniform microdroplets that encapsulate a CRISPR/Cas13a detection system and NCOA4-m6A target from the whole RNA extraction, achieving 10-fold enhancement in sensitivity and significantly reduced limit of detection (LOD). Systematic mouse models and clinical patient samples demonstrated its superior sensitivity and LOD (0.5 Gy) than traditional qPCR, which show wide potentials in radiation tracking and damage protection.
科研通智能强力驱动
Strongly Powered by AbleSci AI