Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals

计算机科学 Boosting(机器学习) 脑-机接口 运动表象 脑电图 会话(web分析) 解码方法 人工智能 阿达布思 集成学习 机器学习 模式识别(心理学) 算法 语音识别 支持向量机 心理学 精神科 万维网
作者
Lincong Pan,Kun Wang,Lichao Xu,Xinwei Sun,Weibo Yi,Minpeng Xu,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066011-066011 被引量:23
标识
DOI:10.1088/1741-2552/ad0a01
摘要

Abstract Objective. Brain–computer interfaces (BCIs) enable a direct communication pathway between the human brain and external devices, without relying on the traditional peripheral nervous and musculoskeletal systems. Motor imagery (MI)-based BCIs have attracted significant interest for their potential in motor rehabilitation. However, current algorithms fail to account for the cross-session variability of electroencephalography signals, limiting their practical application. Approach. We proposed a Riemannian geometry-based adaptive boosting and voting ensemble (RAVE) algorithm to address this issue. Our approach segmented the MI period into multiple sub-datasets using a sliding window approach and extracted features from each sub-dataset using Riemannian geometry. We then trained adaptive boosting (AdaBoost) ensemble learning classifiers for each sub-dataset, with the final BCI output determined by majority voting of all classifiers. We tested our proposed RAVE algorithm and eight other competing algorithms on four datasets (Pan2023, BNCI001-2014, BNCI001-2015, BNCI004-2015). Main results. Our results showed that, in the cross-session scenario, the RAVE algorithm outperformed the eight other competing algorithms significantly under different within-session training sample sizes. Compared to traditional algorithms that involved a large number of training samples, the RAVE algorithm achieved similar or even better classification performance on the datasets (Pan2023, BNCI001-2014, BNCI001-2015), even when it did not use or only used a small number of within-session training samples. Significance. These findings indicate that our cross-session decoding strategy could enable MI-BCI applications that require no or minimal training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助吴苏菲采纳,获得30
1秒前
1秒前
xupt唐僧发布了新的文献求助10
1秒前
1秒前
fengjz发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
ZOLEI完成签到,获得积分10
3秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
科研通AI6应助无情飞薇采纳,获得10
6秒前
A琳完成签到,获得积分20
7秒前
科研巨额发布了新的文献求助10
7秒前
善学以致用应助小灰灰采纳,获得10
7秒前
jcx发布了新的文献求助10
8秒前
芽芽鸭完成签到 ,获得积分10
8秒前
Dandelion完成签到,获得积分10
10秒前
魏猛完成签到,获得积分10
10秒前
太空发布了新的文献求助10
10秒前
SciGPT应助guojingjing采纳,获得10
11秒前
紫婧完成签到,获得积分10
11秒前
Azur1完成签到 ,获得积分10
11秒前
吴天姿发布了新的文献求助200
11秒前
忐忑的红牛完成签到,获得积分10
11秒前
erhui发布了新的文献求助10
11秒前
yly完成签到 ,获得积分10
11秒前
小曹完成签到,获得积分10
12秒前
seattle发布了新的文献求助10
12秒前
科研巨额完成签到,获得积分10
12秒前
xupt唐僧完成签到,获得积分10
12秒前
houl发布了新的文献求助10
13秒前
科研志发布了新的文献求助20
14秒前
15秒前
研友_ndv5j8完成签到,获得积分10
15秒前
苹什么应助白昼の月采纳,获得10
16秒前
17秒前
太空完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812