Rapidly identifying the geographical origin of Lilium bulbs by nano-effect excitation-emission matrix fluorescence combined with chemometrics

化学计量学 主成分分析 线性判别分析 偏最小二乘回归 电子舌 基质(化学分析) 分析化学(期刊) 化学 模式识别(心理学) 生物系统 数学 统计 人工智能 食品科学 计算机科学 色谱法 生物 品味
作者
Wanjun Long,Siyu Wang,Hengye Chen,Yuting Guan,Jian Yang,Yuanbin She,Haiyan Fu
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:123: 105618-105618 被引量:3
标识
DOI:10.1016/j.jfca.2023.105618
摘要

Lilium bulbs (LB) are a highly nutritious food, and their quality and price are influenced by origin. The present study proposed a nano-effect excitation-emission matrix fluorescence (EEMF) combined with chemometrics strategy for rapidly identifying the geographical origin of LB. Nano-effect EEMF spectra of 280 LB samples from different origins were collected after reaction with bovine serum albumin-modified gold and silver nanoclusters (BSA-AuAgNCs). Further, partial least squares-discrimination analysis (PLS-DA) and principal component analysis-linear discriminant analysis (PCA-LDA) were used to establish classification models for identifying the geographical origin of LB based on the obtained nano-effect EEMF spectra. The result showed that PCA-LDA model gained the optimal performance, and the classification accuracy of the training set and the prediction set was 95.9% and 90.5%, respectively. The nano-effect EEMF spectra was based on the reaction of BSA-AuAgNCs with the components, such as phenolic acids, in LB through hydrogen bonding, which amplified the spectral difference. This study demonstrated that the proposed strategy is effective for identifying the geographical origins of LB, which provides a new idea for the geographic traceability of other foods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HAG发布了新的文献求助10
刚刚
牛牛完成签到,获得积分20
1秒前
sakura完成签到,获得积分20
3秒前
酷波er应助阳光的电脑采纳,获得10
3秒前
5秒前
000完成签到 ,获得积分10
5秒前
6秒前
通通完成签到,获得积分10
7秒前
Jerome发布了新的文献求助10
8秒前
华仔应助zz采纳,获得10
8秒前
Owen应助sakura采纳,获得10
11秒前
Harper完成签到,获得积分10
11秒前
1L聚合釜完成签到,获得积分10
11秒前
12秒前
13秒前
在水一方应助都是采纳,获得30
13秒前
刘文静发布了新的文献求助10
13秒前
Jerome完成签到,获得积分10
15秒前
16秒前
宫野珏发布了新的文献求助10
17秒前
20秒前
22秒前
qiqi完成签到,获得积分10
22秒前
宫野珏完成签到,获得积分10
23秒前
欣慰听南发布了新的文献求助10
25秒前
斯文败类应助柔弱亦寒采纳,获得10
25秒前
动漫大师发布了新的文献求助10
26秒前
26秒前
无花果应助任乐乐采纳,获得10
26秒前
月白完成签到,获得积分10
28秒前
28秒前
31秒前
zhu完成签到,获得积分20
31秒前
欣慰听南完成签到,获得积分10
31秒前
Charm8r发布了新的文献求助10
31秒前
脑洞疼应助闪闪的皮皮虾采纳,获得10
32秒前
32秒前
32秒前
33秒前
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818668
求助须知:如何正确求助?哪些是违规求助? 3361732
关于积分的说明 10414088
捐赠科研通 3080008
什么是DOI,文献DOI怎么找? 1693725
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768262