Autofocus Based on Residual Network Realizes Raman Spectral Enhancement

残余物 自动对焦 拉曼光谱 计算机科学 人工智能 算法 光学 物理 光学(聚焦)
作者
Haozhao Chen,Liwei Yang,Weile Zhu,Ping Tang,Xinyue Xing,Weina Zhang,Liyun Zhong
标识
DOI:10.2139/ssrn.4616250
摘要

Due to its high sensitivity and specificity, Micro-Raman spectroscopy has emerged as a vital technique for molecular recognition and identification. As a weakly scattered signal, ensuring the accurate focus of the sample is essential for acquiring high quality Raman spectral signal and its analysis, especially in some complex microenvironments such as intracellular settings. Traditional autofocus methods are often time consuming or necessitate additional hardware, limiting real-time sample observation and device compatibility. Here, we propose an autofocus method based on residual network to realize rapid and adaptive focusing on Micro-Raman measurements. Using only a bright field image of the sample acquired on any image plane, we can predict the defocus distance with a residual network trained by Resnet50, in which the focus position is determined by combining the gradient and discrete cosine transform. Further, detailed regional division of the bright field map used for characterizing the height variation of actual sample surface is performed. As a result, a focus prediction map with 1 μm accuracy is obtained from a bright field image in 120 ms. Based on this method, we successfully realize cellular weak Raman signal enhancement and the necessary correction of spectral information. This adaptive focusing method based on residual network is beneficial to further enhance the sensitivity and accuracy of Micro-Raman spectroscopy technology, which is of great significance in promoting the wide application of Raman spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李嘉伟完成签到,获得积分20
刚刚
Orange应助高高的绿兰采纳,获得10
刚刚
鲸落完成签到,获得积分10
刚刚
1秒前
康康完成签到,获得积分10
1秒前
Hao发布了新的文献求助10
1秒前
2秒前
英俊的铭应助楼谨言采纳,获得10
2秒前
super chan完成签到,获得积分10
2秒前
peekaboo发布了新的文献求助10
2秒前
薄荷778完成签到,获得积分20
2秒前
3秒前
怕黑不平发布了新的文献求助10
3秒前
3秒前
ding应助代代采纳,获得10
3秒前
快乐吗猪完成签到 ,获得积分10
4秒前
上官若男应助ENG采纳,获得10
4秒前
4秒前
飞鸟完成签到,获得积分10
5秒前
runner完成签到,获得积分10
5秒前
33完成签到,获得积分10
5秒前
希望天下0贩的0应助xfyxxh采纳,获得10
6秒前
6秒前
NIUBEN发布了新的文献求助10
6秒前
yueyue3SCI完成签到,获得积分10
6秒前
背后如彤完成签到,获得积分10
6秒前
ding应助stobely采纳,获得10
6秒前
7秒前
zll完成签到 ,获得积分10
7秒前
Morning_King完成签到,获得积分20
7秒前
我是老大应助zheng采纳,获得10
7秒前
日川冈坂完成签到 ,获得积分10
7秒前
chen发布了新的文献求助10
7秒前
meng136281发布了新的文献求助10
7秒前
快乐小狗完成签到,获得积分10
8秒前
SciGPT应助三国杀启动采纳,获得10
8秒前
8秒前
8秒前
scc发布了新的文献求助10
9秒前
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747