共烧
煤
燃烧
生物炭
废物管理
生物量(生态学)
环境科学
煤燃烧产物
污水污泥
城市固体废物
可再生能源
氮氧化物
环境工程
化学
污水
工程类
热解
地质学
电气工程
有机化学
海洋学
作者
Young-Sun Jeong,Jae-Sung Kim,Ye-Eun Lee,Dong-Chul Shin,Kwang–Ho Ahn,Jinhong Jung,Kyeong-Ho Kim,Min-Jong Ku,Seung Mo Kim,Chung-Hwan Jeon,Dong-Won Kim
出处
期刊:Sustainability
[Multidisciplinary Digital Publishing Institute]
日期:2023-10-08
卷期号:15 (19): 14596-14596
摘要
Among the alternative recycling methods for food waste, its utilization as a renewable biomass resource has demonstrated great potential. This study presents empirical findings pertaining to the cofiring of solid biomass fuel and coal for power generation. Various co-combustion ratios involving food waste biochar (FWB) and coal (100:0, 85:15, 90:10, 95:5, and 0:100) were tested to optimize combustion efficiency, monitor the emissions of NOX, CO, and unburned carbon (UBC), assess ash deposition tendencies, and evaluate grindability. Two types of FWB and sewage sludge were selected as biomass fuels. The results demonstrated that co-combustion involving FWB reduced NOX and UBC emissions compared to coal combustion alone. In particular, the 10% FWB_A blend exhibited the best combustion efficiency. Notably, FWB demonstrated lower tendencies for ash deposition. The ash fusion characteristics were monitored via thermomechanical analysis (TMA), and the corresponding shrinkage levels were measured. Furthermore, FWB exhibited superior grindability compared to both coal and sewage sludge, reducing power consumption during fuel preparation. This study suggests that FWB is a valuable co-combustion resource in coal-fired power plants, thereby facilitating the efficient recycling of food waste while concurrently advancing clean energy generation. Nevertheless, further research is required to validate its practical applicability and promote its use as a renewable resource.
科研通智能强力驱动
Strongly Powered by AbleSci AI