Converting methane into electricity and higher-value chemicals at scale via anaerobic microbial fuel cells

微生物燃料电池 甲烷 生化工程 工艺工程 化学能 微生物联合体 温室气体 环境科学 发电 可扩展性 模块化设计 厌氧消化 废物管理 工程类 计算机科学 功率(物理) 化学 电气工程 生态学 量子力学 数据库 生物 细菌 遗传学 操作系统 微生物 物理 有机化学
作者
Thomas K. Wood,Ilke Gurgan,Ethan Howley,Ingmar H. Riedel‐Kruse
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:188: 113749-113749 被引量:7
标识
DOI:10.1016/j.rser.2023.113749
摘要

Methane (CH4) is the second most damaging greenhouse gas by absolute amounts released. Many globally distributed methane sources are of human origin, representing a significant untapped potential for capture and on-site conversion into electricity or 'higher value' chemicals. This study systematically and quantitatively analyzes the anaerobic oxidation of methane (AOM) in microbial fuel cells (MFCs) for generating electric power as well as analyzes AOM in bioreactors for producing value-added chemicals. The maximum performance of such systems is currently unknown. Based on biophysical arguments, power densities of 10 kW/m3 and more should be achievable, and Coulombic, carbon conversion, and energy conversion efficiency could reach 90%. Such performance is much higher than what is usually predicted. This AOM MFC approach promises higher efficiency, scalability, cost-effectiveness, and easier distribution compared to existing chemical plants or aerobic biological approaches. Yet achieving this requires significant and integrated advancement of different technologies. This analysis provides an accessible primer for the necessary interdisciplinary research effort, and discusses recent enabling biotechnological advancements, open research questions and corresponding R&D pathways, where enzyme and synthetic microbial consortia engineering, microfluidic technologies, membrane and electrode materials, modular system integration, and power optimization technology will likely be critical. In conclusion, AOM MFC is a very promising technology as the performance limits estimated here show, and if realized at scale, a significant impact on green-house gas reduction and sustainable, on-demand electricity and chemical (fuel) production could be achieved; this analysis could also aid the rational MFC design for other chemical reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moonman发布了新的文献求助10
刚刚
企鹅乌云发布了新的文献求助10
刚刚
liu关闭了liu文献求助
1秒前
1秒前
CipherSage应助rpe采纳,获得10
4秒前
赵梦娜发布了新的文献求助10
6秒前
Charming完成签到,获得积分10
7秒前
Zhazah完成签到 ,获得积分20
8秒前
栗子哇呀完成签到 ,获得积分10
9秒前
9秒前
arui完成签到 ,获得积分10
11秒前
12秒前
13秒前
Jasper应助壮观以松采纳,获得10
13秒前
谢谢李完成签到 ,获得积分10
14秒前
moonman完成签到,获得积分10
15秒前
猪猪hero发布了新的文献求助10
15秒前
CJ发布了新的文献求助10
15秒前
16秒前
荷包蛋完成签到,获得积分10
17秒前
科研通AI5应助ac采纳,获得60
18秒前
20秒前
22秒前
研友_VZG7GZ应助GreenT采纳,获得10
24秒前
28秒前
小马甲应助CJ采纳,获得10
28秒前
友好的翅膀完成签到,获得积分10
32秒前
科研通AI5应助whiskeyhan采纳,获得10
35秒前
虚拟的柠檬完成签到,获得积分10
40秒前
EdenLee完成签到 ,获得积分10
43秒前
热心市民小红花应助阿峰采纳,获得50
43秒前
落寞的半仙关注了科研通微信公众号
44秒前
45秒前
罗子哥发布了新的文献求助50
45秒前
六六完成签到,获得积分10
46秒前
49秒前
呦呦又鹿发布了新的文献求助10
49秒前
wailiii完成签到 ,获得积分10
50秒前
英姑应助JenifferF采纳,获得10
51秒前
51秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836309
求助须知:如何正确求助?哪些是违规求助? 3378623
关于积分的说明 10505359
捐赠科研通 3098262
什么是DOI,文献DOI怎么找? 1706407
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772382