Applications of multi‐omics analysis in human diseases

组学 计算机科学 数据科学 计算生物学 生物信息学 生物
作者
Chongyang Chen,Jing Wang,Donghui Pan,Xinyu Wang,Yuping Xu,Junjie Yan,Lizhen Wang,Xifei Yang,Min Yang,Gong‐Ping Liu
出处
期刊:MedComm [Wiley]
卷期号:4 (4): e315-e315 被引量:338
标识
DOI:10.1002/mco2.315
摘要

Abstract Multi‐omics usually refers to the crossover application of multiple high‐throughput screening technologies represented by genomics, transcriptomics, single‐cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi‐omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi‐omics. This review outlines the existing technical categories of multi‐omics, cautions for experimental design, focuses on the integrated analysis methods of multi‐omics, especially the approach of machine learning and deep learning in multi‐omics data integration and the corresponding tools, and the application of multi‐omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open‐source analysis tools and databases, and finally, discusses the challenges and future directions of multi‐omics integration and application in precision medicine. With the development of high‐throughput technologies and data integration algorithms, as important directions of multi‐omics for future disease research, single‐cell multi‐omics and spatial multi‐omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi‐omics medical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
mao完成签到 ,获得积分10
1秒前
kingwill发布了新的文献求助20
1秒前
1秒前
狂野萤完成签到,获得积分0
2秒前
Hello应助梨L采纳,获得10
2秒前
3秒前
3秒前
背后的雪卉应助thinking采纳,获得10
3秒前
yzhn发布了新的文献求助10
3秒前
4秒前
赘婿应助刘明升采纳,获得10
5秒前
5秒前
5秒前
adore完成签到,获得积分20
6秒前
qinxue发布了新的文献求助10
7秒前
7秒前
7秒前
曹毅凯完成签到,获得积分10
7秒前
7秒前
热心幻天发布了新的文献求助10
8秒前
嘿嘿完成签到,获得积分10
9秒前
七安完成签到 ,获得积分10
9秒前
zly发布了新的文献求助10
9秒前
Lucas应助dora332211采纳,获得10
9秒前
33应助冷酷的枕头采纳,获得10
9秒前
10秒前
coffee完成签到,获得积分10
10秒前
zouzuhao发布了新的文献求助10
10秒前
10秒前
10秒前
呼噜噜大王关注了科研通微信公众号
11秒前
花卷应助TIAMO采纳,获得10
11秒前
leslie应助栗松琛采纳,获得10
11秒前
无极微光应助123采纳,获得20
11秒前
11秒前
无花果应助心中有淳采纳,获得10
11秒前
11秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593772
求助须知:如何正确求助?哪些是违规求助? 4679592
关于积分的说明 14810710
捐赠科研通 4644771
什么是DOI,文献DOI怎么找? 2534653
邀请新用户注册赠送积分活动 1502712
关于科研通互助平台的介绍 1469375