Toward Interpretable Sleep Stage Classification Using Cross-Modal Transformers

可解释性 计算机科学 深度学习 情态动词 变压器 人工智能 机器学习 卷积神经网络 人工神经网络 工程类 电压 化学 高分子化学 电气工程
作者
Jathurshan Pradeepkumar,Mithunjha Anandakumar,Vinith Kugathasan,Dhinesh Suntharalingham,Simon L. Kappel,Anjula De Silva,Chamira U. S. Edussooriya
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 2893-2904 被引量:25
标识
DOI:10.1109/tnsre.2024.3438610
摘要

Accurate sleep stage classification is significant for sleep health assessment. In recent years, several machine-learning based sleep staging algorithms have been developed, and in particular, deep-learning based algorithms have achieved performance on par with human annotation. Despite improved performance, a limitation of most deep-learning based algorithms is their black-box behavior, which have limited their use in clinical settings. Here, we propose a cross-modal transformer, which is a transformer-based method for sleep stage classification. The proposed cross-modal transformer consists of a cross-modal transformer encoder architecture along with a multi-scale one-dimensional convolutional neural network for automatic representation learning. The performance of our method is on-par with the state-of-the-art methods and eliminates the black-box behavior of deep-learning models by utilizing the interpretability aspect of the attention modules. Furthermore, our method provides considerable reductions in the number of parameters and training time compared to the state-of-the-art methods. Our code is available at https://github.com/Jathurshan0330/Cross-Modal-Transformer. A demo of our work can be found at https://bit.ly/Cross_modal_transformer_demo.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
英俊的铭应助自信书竹采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
wlscj应助科研通管家采纳,获得20
1秒前
爆米花应助科研通管家采纳,获得20
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
愉快的孤容完成签到,获得积分10
1秒前
希望天下0贩的0应助s_chui采纳,获得10
2秒前
Zx_1993应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得20
2秒前
小青椒应助科研通管家采纳,获得50
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
3秒前
4秒前
zcq完成签到 ,获得积分10
5秒前
xubozhao发布了新的文献求助10
6秒前
刘旭环完成签到,获得积分10
7秒前
7秒前
HELPMEPLZ发布了新的文献求助10
8秒前
8秒前
舒适不言完成签到,获得积分10
8秒前
ding应助lxybstxdym采纳,获得10
9秒前
10秒前
wu发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
duo完成签到,获得积分10
11秒前
12秒前
ningning完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227626
求助须知:如何正确求助?哪些是违规求助? 4398610
关于积分的说明 13690250
捐赠科研通 4263395
什么是DOI,文献DOI怎么找? 2339770
邀请新用户注册赠送积分活动 1336946
关于科研通互助平台的介绍 1293071