Potential Screening, Grading and Follow-Up of Diabetic Retinopathy in Primary Care Using Artificial Intelligence – How Hard Would It Be to Implement? An Ophthalmologist’s Perspective

初级保健 分级(工程) 糖尿病性视网膜病变 透视图(图形) 验光服务 医学 眼科 儿科 人工智能 计算机科学 糖尿病 家庭医学 工程类 内分泌学 土木工程
作者
Alexandra Cristina Rusu,Raluca Ozana Chistol,Simona-Irina Damian,Klara Brînzaniuc,Karin Horváth
出处
期刊:Broad Research in Artificial Inteligence Neuroscience [Asociatia LUMEN]
卷期号:15 (2): 280-303 被引量:1
标识
DOI:10.18662/brain/15.2/576
摘要

Diabetic retinopathy (DR) is a microvascular disorder caused by the long-term effects of diabetes mellitus and among the primary causes of blindness worldwide. Early detection of DR is the key to its effective treatment and subsequent reduction of associated economic burden, but manual screening is time-consuming and of limited availability. A highly sensitive and specific automatic diagnostic tool would significantly improve screening programs and allow referring for further evaluation and treatment in an ophthalmology clinic only patients with significant lesions or with changes between two successive evaluations. Several deep learning-based automated diagnosis tools have been proposed to aid screening but their implementation with minimal costs is not accessible to physicians with no coding knowledge. We aimed to develop a fundus images classification model with no coding knowledge by using generative artificial intelligence (AI) implemented in Windows 11 operating system under subscription (Copilot Pro), a free image analysis tool (Fiji ImageJ2), and Vertex AI, a machine learning (ML) platform launched by Google in 2021. For this purpose, we selected a total of 2961 labelled cases from the APTOS 2019 database of DR fundus images. Images were batch segmented using a Java ImageJ script generated by Copilot Pro and based on the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. Segmented images were used to train an automated ML classification model to detect DR severity (5 classes – no DR, mild non-proliferative DR, moderate DR, severe DR, proliferative DR). The model achieved an area under the precision-recall curve of 0.889, with a precision rate of 83.8% and a recall rate of 77%. In conclusion, generative AI implemented into Windows operating system together with a free imaging processing tool and Vertex AI allow ophthalmologists with no coding knowledge to benefit from publicly available image databases (thousands of cases) to develop accurate automated diagnostic tools. Such tools have the potential to facilitate screening especially in areas with few specialists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ding发布了新的文献求助20
2秒前
YOUNG-M完成签到,获得积分10
4秒前
白白发布了新的文献求助10
6秒前
7秒前
8秒前
18166992885完成签到 ,获得积分10
9秒前
落寞向松发布了新的文献求助10
9秒前
9秒前
dali完成签到,获得积分10
11秒前
yrr完成签到,获得积分20
12秒前
Mermaid发布了新的文献求助10
13秒前
yiw发布了新的文献求助10
14秒前
元气马完成签到,获得积分10
15秒前
15秒前
Chency完成签到,获得积分10
17秒前
20秒前
ding应助yiw采纳,获得10
21秒前
小蘑菇应助lengchitu采纳,获得10
21秒前
khh完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
鱼籽发布了新的文献求助10
23秒前
jjb发布了新的文献求助10
24秒前
25秒前
26秒前
轻松的鸿煊完成签到 ,获得积分10
28秒前
张海新完成签到,获得积分10
29秒前
科研通AI2S应助Biophilia采纳,获得10
31秒前
烟花应助负责的方盒采纳,获得10
31秒前
小二郎应助贾舒涵采纳,获得30
32秒前
32秒前
yrr发布了新的文献求助10
32秒前
无花果应助ding采纳,获得10
32秒前
33秒前
33秒前
科研的POWER完成签到,获得积分10
33秒前
乐乐完成签到,获得积分10
35秒前
科研通AI6应助李李采纳,获得10
35秒前
jjb完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428317
求助须知:如何正确求助?哪些是违规求助? 4542326
关于积分的说明 14179967
捐赠科研通 4459943
什么是DOI,文献DOI怎么找? 2445522
邀请新用户注册赠送积分活动 1436716
关于科研通互助平台的介绍 1413878