Uni-ELF: A Multi-Level Representation Learning Framework for Electrolyte Formulation Design

代表(政治) 电解质 计算机科学 数学 物理 政治学 量子力学 电极 政治 法学
作者
Boshen Zeng,S. J. Chen,Xinxin Liu,Changhong Chen,Bin Deng,Xiaoxu Wang,Zhifeng Gao,Yuzhi Zhang,E Weinan,Linfeng Zhang
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2407.06152
摘要

Advancements in lithium battery technology heavily rely on the design and engineering of electrolytes. However, current schemes for molecular design and recipe optimization of electrolytes lack an effective computational-experimental closed loop and often fall short in accurately predicting diverse electrolyte formulation properties. In this work, we introduce Uni-ELF, a novel multi-level representation learning framework to advance electrolyte design. Our approach involves two-stage pretraining: reconstructing three-dimensional molecular structures at the molecular level using the Uni-Mol model, and predicting statistical structural properties (e.g., radial distribution functions) from molecular dynamics simulations at the mixture level. Through this comprehensive pretraining, Uni-ELF is able to capture intricate molecular and mixture-level information, which significantly enhances its predictive capability. As a result, Uni-ELF substantially outperforms state-of-the-art methods in predicting both molecular properties (e.g., melting point, boiling point, synthesizability) and formulation properties (e.g., conductivity, Coulombic efficiency). Moreover, Uni-ELF can be seamlessly integrated into an automatic experimental design workflow. We believe this innovative framework will pave the way for automated AI-based electrolyte design and engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助Bin采纳,获得10
1秒前
汉堡包应助hhh采纳,获得10
2秒前
2秒前
jxm发布了新的文献求助10
2秒前
2秒前
3秒前
小吉麻麻发布了新的文献求助10
3秒前
4秒前
move完成签到,获得积分10
4秒前
三方完成签到,获得积分10
5秒前
6秒前
bt4567发布了新的文献求助10
7秒前
晓晓完成签到,获得积分10
7秒前
7秒前
8秒前
俏皮绿蓉完成签到,获得积分10
8秒前
燚槿完成签到,获得积分10
9秒前
9秒前
Jasper应助vx采纳,获得10
10秒前
小粥发布了新的文献求助10
11秒前
11秒前
小米发布了新的文献求助10
11秒前
emma应助晶莹雪2943采纳,获得10
11秒前
非泥完成签到,获得积分10
12秒前
提拉米苏完成签到,获得积分10
13秒前
JamesPei应助鹤川采纳,获得10
14秒前
amore完成签到 ,获得积分10
14秒前
14秒前
激动的小笼包完成签到,获得积分10
15秒前
热心树叶应助池鱼采纳,获得30
15秒前
17秒前
17秒前
森林木应助幸福的醉山采纳,获得30
17秒前
明亮访烟发布了新的文献求助10
18秒前
长度2到完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
Ray完成签到 ,获得积分10
19秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490311
求助须知:如何正确求助?哪些是违规求助? 4588930
关于积分的说明 14422006
捐赠科研通 4520870
什么是DOI,文献DOI怎么找? 2476883
邀请新用户注册赠送积分活动 1462361
关于科研通互助平台的介绍 1435242