ASARU-Net: superimposed U-Net with residual squeeze-and-excitation layer for road crack segmentation

分割 计算机科学 人工智能 雅卡索引 图像分割 计算机视觉 卷积神经网络 残余物 模式识别(心理学) 尺度空间分割 算法
作者
Sheng Wang,Ban Wang,Xiaoliang Jiang,Changlu Dai,Nan Wang,Ying Yang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (02)
标识
DOI:10.1117/1.jei.32.2.023040
摘要

Accurate segmentation of road cracks is vital for identifying cracks in pavements for greater traffic safety. However, owing to blurred boundaries, low contrast between cracks and the surrounding environments, changes in color and shape, most existing segmentation methods face significant challenges in obtaining receptive fields and extracting image feature information. To overcome these issues, we constructed a new framework, named ASARU-Net, to analyze and segment road cracks. We utilized a superimposed U-Net architecture instead of the original 3 × 3 convolution layer to improve the receptive field and enhance segmentation performance. Then, we employed a convolution block in the last layer of the decoding path to obtain more discriminative features. Moreover, the residual mechanism was integrated into a spatial squeeze-and-excitation layer and convolutional block attention module, which improved sensitivity and prediction accuracy. A mixed loss integrating binary cross-entropy and Jaccard loss was used to ensure more balanced segmentation. The proposed method was applied on CRACK500 image database, and achieved a superior performance with Dice, Jaccard, and accuracy values of 79.83%, 69.92%, and 96.94%, respectively. The quantitative and qualitative experimental results show that our method achieves high-performance road crack segmentation and can adapt to cracks with complex background and more interference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mumus发布了新的文献求助10
1秒前
打打应助帅气的宛凝采纳,获得10
2秒前
潘润朗完成签到,获得积分10
2秒前
3秒前
4秒前
搜集达人应助ma化疼没木采纳,获得10
4秒前
NexusExplorer应助认真野狼采纳,获得10
5秒前
温暖哈密瓜完成签到 ,获得积分10
7秒前
小巧怀薇发布了新的文献求助10
9秒前
9秒前
SciGPT应助jxzhou采纳,获得10
9秒前
10秒前
SCI666完成签到,获得积分20
10秒前
11111发布了新的文献求助10
12秒前
13秒前
怡然幻然发布了新的文献求助10
14秒前
李小咖完成签到,获得积分10
14秒前
14秒前
15秒前
Hu关闭了Hu文献求助
18秒前
tomorrow完成签到 ,获得积分10
18秒前
jxzhou完成签到,获得积分10
18秒前
yoyo完成签到,获得积分10
19秒前
酷波er应助小美采纳,获得10
19秒前
20秒前
仙都丽娜发布了新的文献求助10
20秒前
无私念瑶完成签到,获得积分10
20秒前
科研小趴菜完成签到,获得积分10
21秒前
123发布了新的文献求助20
21秒前
未来可期应助科研通管家采纳,获得10
21秒前
21秒前
jxzhou发布了新的文献求助10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
chengjie应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
chengjie应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Guideline No. 345: Primary Dysmenorrhea 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4058932
求助须知:如何正确求助?哪些是违规求助? 3597231
关于积分的说明 11427902
捐赠科研通 3322187
什么是DOI,文献DOI怎么找? 1826759
邀请新用户注册赠送积分活动 897369
科研通“疑难数据库(出版商)”最低求助积分说明 818374