Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review

指纹(计算) 计算机科学 无线 指纹识别 软件部署 样品(材料) 可用性 全球定位系统 人工智能 数据挖掘 机器学习 实时计算 电信 人机交互 化学 色谱法 操作系统
作者
Liu Wen,Yingeng Zhang,Zhongliang Deng,Heyang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37535-37545 被引量:4
标识
DOI:10.1109/access.2023.3266874
摘要

The fingerprint positioning has achieved remarkable results in indoor localization tasks, but the method usually relies on a large amount of fingerprint data to build a fingerprint database, and the amount and diversity of fingerprint data will directly affect the effectiveness of fingerprint positioning. Since fingerprint acquisition is limited and disturbed by space and time, it consumes a lot of labor and time costs to collect fingerprint data in the localization environment, and wireless fingerprint data is time-sensitive and environment-dependent, and changes in the localization environment will reduce the usability of the existing fingerprint database. The complex and repetitive fingerprint acquisition work seriously affects the feasibility of practical deployment of fingerprint positioning systems in the positioning environment. Therefore, the study of low-cost wireless fingerprint database construction methods has become an inevitable part of promoting the widespread deployment of indoor fingerprint positioning systems. In this paper, we introduce the traditional data augmentation-based approach and the advanced machine learning model-based approach, systematically presenting the underlying models and algorithms of both. The former reviews the application of two traditional data enhancement methods, namely channel propagation models and interpolation or regression, to the construction of low-cost wireless fingerprint databases, while the latter taps into techniques for reducing the cost of fingerprint database construction by combining generative adversarial networks and small-sample learning models with the indoor localization domain. Finally, we discuss the current challenges and future research directions for achieving high-performance indoor localization based on low-cost wireless fingerprint databases, and suggest some useful research guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆脸的空间啊完成签到,获得积分20
1秒前
会厌完成签到 ,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
ziyuexu发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
_是小满完成签到,获得积分10
6秒前
葱油面完成签到,获得积分10
7秒前
nihao完成签到,获得积分10
9秒前
lxlcx发布了新的文献求助10
10秒前
英俊的铭应助澜汐采纳,获得10
12秒前
星星完成签到,获得积分10
12秒前
hc完成签到,获得积分10
12秒前
19秒前
K. G.完成签到,获得积分10
19秒前
20秒前
思源应助junjun采纳,获得10
21秒前
影子发布了新的文献求助10
22秒前
万能图书馆应助土豆侠采纳,获得10
24秒前
26秒前
打打应助海蓝鲸采纳,获得10
26秒前
26秒前
26秒前
Lucas应助a136采纳,获得10
27秒前
28秒前
清圆527完成签到,获得积分10
28秒前
changfox完成签到,获得积分10
28秒前
31秒前
hanchangcun完成签到,获得积分10
31秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825602
求助须知:如何正确求助?哪些是违规求助? 3367793
关于积分的说明 10447773
捐赠科研通 3087200
什么是DOI,文献DOI怎么找? 1698517
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973