Mixed-integer programming model and hybrid local search genetic algorithm for human–robot collaborative disassembly line balancing problem

再制造 遗传算法 工作站 数学优化 编码(内存) 计算机科学 解码方法 整数规划 动力传动系统 局部搜索(优化) 算法 机器人 直线(几何图形) 功率(物理) 工程类 人工智能 数学 扭矩 几何学 物理 操作系统 热力学 机械工程 量子力学
作者
Tengfei Wu,Zeqiang Zhang,Yanqing Zeng,Yu Zhang
出处
期刊:International Journal of Production Research [Informa]
卷期号:62 (5): 1758-1782 被引量:43
标识
DOI:10.1080/00207543.2023.2201352
摘要

Human–robot collaborative technology maximises the advantages of the capabilities of humans and robots, and provides diverse operating scenarios for the remanufacturing industry. Accordingly, this paper proposes an innovative human–robot collaborative disassembly line balancing problem (HRC-DLBP). First, a mixed-integer programming (MIP) model is devised for the HRC-DLBP to minimise the number of workstations, smoothness index, and various costs. Second, a hybrid local search genetic algorithm (HLSGA) is developed to solve the proposed HRC-DLBP efficiently. According to the problem characteristics, a four-layer encoding and decoding strategy was constructed. The search mechanism of the local search operator was improved, and its search strategy was adjusted to suit the genetic algorithm structure better. Furthermore, the accuracy of the proposed MIP model and HLSGA is verified through two HRC-DLBP examples. Subsequently, three HRC-DLBP examples are used to prove that the HLSGA is superior to five other excellent algorithms. The case of the two-sided disassembly line problem reported in the literature is also solved using the HLSGA. The results are found to be significantly better than the reported outputs of the improved whale optimisation algorithm. Besides, HLSGA also outperforms the results reported in the literature in solving EOL state-oriented DLBP. Finally, the HLSGA is applied to a power battery disassembly problem, and several optimal allocation schemes are obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助宇月幸成采纳,获得10
1秒前
RJ应助贾大大采纳,获得10
2秒前
3秒前
3秒前
蔡军发布了新的文献求助10
4秒前
Taylor完成签到,获得积分0
5秒前
金帛心兑发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助Roxie采纳,获得10
7秒前
8秒前
aaaa发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
慕青应助缝纫工采纳,获得10
8秒前
李健的小迷弟应助sh131采纳,获得10
9秒前
沙漠发布了新的文献求助10
10秒前
傲娇的凡发布了新的文献求助10
12秒前
13秒前
14秒前
16秒前
LiuChuannan发布了新的文献求助10
18秒前
嘎嘣脆发布了新的文献求助10
18秒前
18秒前
Kkkkk发布了新的文献求助10
19秒前
JamesPei应助ppc采纳,获得10
19秒前
孙大漂亮完成签到,获得积分10
19秒前
20秒前
21秒前
火星上平蝶完成签到,获得积分10
21秒前
亦屿森发布了新的文献求助10
21秒前
王WW完成签到,获得积分10
22秒前
22秒前
22秒前
洁净的书琴完成签到 ,获得积分10
23秒前
脑洞疼应助负责天蓉采纳,获得10
23秒前
孙大漂亮发布了新的文献求助10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722200
求助须知:如何正确求助?哪些是违规求助? 5269082
关于积分的说明 15296085
捐赠科研通 4871311
什么是DOI,文献DOI怎么找? 2615904
邀请新用户注册赠送积分活动 1565718
关于科研通互助平台的介绍 1522616