Grouped Multi-Attention Network for Hyperspectral Image Spectral-Spatial Classification

判别式 计算机科学 高光谱成像 人工智能 模式识别(心理学) 特征(语言学) 光谱带 空间分析 卷积神经网络 特征学习 像素 上下文图像分类 遥感 图像(数学) 地质学 哲学 语言学
作者
Ting Lu,Mengkai Liu,Wei Fu,Xudong Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:14
标识
DOI:10.1109/tgrs.2023.3263851
摘要

Deep learning has been a powerful tool for hyperspectral image (HSI) classification. However, it is still an open issue to effectively learn highly discriminative features from the HSI, due to the high-dimensionality and complex spectral-spatial characteristics. To settle this issue, we propose a new band-grouping guided multi-attention module for the performance promotion of spectral-spatial feature learning. First, based on the fact of high relevance between adjacent spectral bands and low dependencies across long-range ones, all the spectral bands are adaptively divided into multiple non-overlapping groups where relevant bands are included. The advantage is to reduce the spectral dimension and data complexity when processing and analyzing each group. Then, a multi-attention mechanism, which not only explore the intra-group salient information but also propagate the inter-group difference information, is embedded into the convolutional neural networks to learn group-specific spectral-spatial features. By emphasizing useful spectral/spatial information and squeezing useless information with attention mechanism, the severability of learned features is enhanced. Based on this module, a spectral-spatial classification network is built, named by grouped multi-attention network (GMA-Net). The GMA-Net contains a two-branch architecture, i.e., pixel-wise spectral feature learning and patch-wise spectral-spatial feature learning. Via fusing the features from two branches, the complementary and discriminative features provided by pixel-wise and patch-wise learning manner can be integrated to further boost classification performance. Experimental results demonstrate that the proposed method is superior than several state-of-the-art approaches. Codes are available at: https://github.com/luting-hnu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的沉鱼完成签到,获得积分10
刚刚
SYLH应助冷傲迎梦采纳,获得10
1秒前
如你所liao完成签到,获得积分10
1秒前
虚幻谷秋完成签到,获得积分10
1秒前
qluo001完成签到,获得积分10
1秒前
舒心秋蝶完成签到,获得积分10
2秒前
houxufeng完成签到 ,获得积分10
3秒前
天天快乐应助dd采纳,获得10
4秒前
云鲲完成签到,获得积分10
4秒前
yk完成签到 ,获得积分10
5秒前
Gao完成签到,获得积分20
5秒前
大明完成签到 ,获得积分10
5秒前
conanyangqun完成签到,获得积分10
5秒前
李健的小迷弟应助1111采纳,获得10
5秒前
哎呀完成签到,获得积分10
6秒前
xx完成签到,获得积分10
6秒前
D阿政发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助树大根深采纳,获得10
7秒前
ming完成签到,获得积分10
7秒前
ying完成签到,获得积分10
7秒前
dktrrrr完成签到,获得积分10
7秒前
兰先生完成签到 ,获得积分10
8秒前
木木完成签到 ,获得积分10
8秒前
hu完成签到,获得积分10
9秒前
惊天大幂幂完成签到,获得积分10
9秒前
shepherd完成签到,获得积分10
9秒前
tangyong完成签到,获得积分10
9秒前
labordoc完成签到,获得积分10
10秒前
ttkd11完成签到,获得积分10
11秒前
sje完成签到 ,获得积分10
11秒前
11秒前
研友_nqv2WZ完成签到,获得积分10
12秒前
Sissi完成签到,获得积分10
12秒前
bxll完成签到 ,获得积分10
13秒前
YK完成签到,获得积分10
15秒前
山山而川发布了新的文献求助10
16秒前
有魅力的安蕾完成签到 ,获得积分10
16秒前
科研通AI2S应助Gao采纳,获得10
17秒前
郭慧娜完成签到,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792657
求助须知:如何正确求助?哪些是违规求助? 3336933
关于积分的说明 10282572
捐赠科研通 3053784
什么是DOI,文献DOI怎么找? 1675684
邀请新用户注册赠送积分活动 803730
科研通“疑难数据库(出版商)”最低求助积分说明 761510