计算机科学
分割
人工智能
RGB颜色模型
情态动词
特征(语言学)
推论
计算机视觉
模式识别(心理学)
融合机制
融合
语言学
脂质双层融合
哲学
化学
高分子化学
作者
Qiankun Zhao,Yingcai Wan,Jiqian Xu,Lijin Fang
出处
期刊:Neurocomputing
[Elsevier]
日期:2023-05-25
卷期号:548: 126389-126389
被引量:21
标识
DOI:10.1016/j.neucom.2023.126389
摘要
RGB-D semantic segmentation is crucial for robots to understand scenes. Most existing methods take depth information as an additional input, leading to cross-modal semantic segmentation networks that cannot achieve the purpose of multi-scale global and local cross-modal feature complementation. In this paper, we propose a cross-modal attention fusion network for RGB-D semantic segmentation. Specifically, we adopt a coordinate attention feature interaction module (CA-FIM) to aggregate RGB and depth features at the spatial and channel levels through the coordinate attention mechanism. Then, the gated cross-attention feature fusion module (GC-FFM) fuses the expanded modal features to achieve cross-modal global inference by the gated cross-attention mechanism. Utilizing the above two modules in four stages of the network, our framework can learn multi-modal and multi-level information to reduce the uncertainty of the final prediction. Extensive experiments on the NYU Depth V2, SUN RGB-D, and Cityscapes datasets demonstrate that our cross-modal attention fusion network is effective in RGB-D semantic segmentation for various complicated scenes.
科研通智能强力驱动
Strongly Powered by AbleSci AI