A novel signature predicts prognosis and immunotherapy in lung adenocarcinoma based on cancer-associated fibroblasts

列线图 腺癌 基因签名 免疫疗法 肺癌 肿瘤科 比例危险模型 免疫系统 医学 癌症 内科学 生物 基因 免疫学 基因表达 遗传学
作者
Qianhe Ren,Pengpeng Zhang,Haoran Lin,Yanlong Feng,Hao Chi,Xiao Zhang,Zhijia Xia,Huabao Cai,Yue Yu
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:14 被引量:54
标识
DOI:10.3389/fimmu.2023.1201573
摘要

Background Extensive research has established the significant correlations between cancer-associated fibroblasts (CAFs) and various stages of cancer development, including initiation, angiogenesis, progression, and resistance to therapy. In this study, we aimed to investigate the characteristics of CAFs in lung adenocarcinoma (LUAD) and develop a risk signature to predict the prognosis of patients with LUAD. Methods We obtained single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data from the public database. The Seurat R package was used to process the scRNA-seq data and identify CAF clusters based on several biomarkers. CAF-related prognostic genes were further identified using univariate Cox regression analysis. To reduce the number of genes, Lasso regression was performed, and a risk signature was established. A novel nomogram that incorporated the risk signature and clinicopathological features was developed to predict the clinical applicability of the model. Additionally, we conducted immune landscape and immunotherapy responsiveness analyses. Finally, we performed in vitro experiments to verify the functions of EXO1 in LUAD. Results We identified 5 CAF clusters in LUAD using scRNA-seq data, of which 3 clusters were significantly associated with prognosis in LUAD. A total of 492 genes were found to be significantly linked to CAF clusters from 1731 DEGs and were used to construct a risk signature. Moreover, our immune landscape exploration revealed that the risk signature was significantly related to immune scores, and its ability to predict responsiveness to immunotherapy was confirmed. Furthermore, a novel nomogram incorporating the risk signature and clinicopathological features showed excellent clinical applicability. Finally, we verified the functions of EXP1 in LUAD through in vitro experiments. Conclusions The risk signature has proven to be an excellent predictor of LUAD prognosis, stratifying patients more appropriately and precisely predicting immunotherapy responsiveness. The comprehensive characterization of LUAD based on the CAF signature can predict the response of LUAD to immunotherapy, thus offering fresh perspectives into the management of LUAD patients. Our study ultimately confirms the role of EXP1 in facilitating the invasion and growth of tumor cells in LUAD. Nevertheless, further validation can be achieved by conducting in vivo experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栖于霞蔚完成签到,获得积分10
刚刚
刚刚
wangzian完成签到 ,获得积分10
1秒前
仁爱宛筠完成签到,获得积分10
1秒前
畅快菠萝发布了新的文献求助10
1秒前
2秒前
blank12发布了新的文献求助10
2秒前
YG完成签到,获得积分20
2秒前
递年发布了新的文献求助20
2秒前
3秒前
我在青年湖旁完成签到,获得积分10
3秒前
俏皮白云完成签到 ,获得积分10
3秒前
小南完成签到,获得积分10
4秒前
万能图书馆应助Assure采纳,获得10
5秒前
YG发布了新的文献求助20
6秒前
6秒前
6秒前
Lucas应助12采纳,获得10
6秒前
6秒前
galaxy发布了新的文献求助10
7秒前
yyb1993发布了新的文献求助10
7秒前
hanzhipad应助wwww采纳,获得10
7秒前
里面发布了新的文献求助10
8秒前
nibaba完成签到,获得积分10
8秒前
blank12完成签到,获得积分10
8秒前
zhang完成签到,获得积分10
8秒前
VVV完成签到,获得积分10
8秒前
wuwuwu完成签到,获得积分20
8秒前
咕噜咕噜完成签到,获得积分10
9秒前
Chunlan发布了新的文献求助10
9秒前
神勇的代荷完成签到 ,获得积分10
9秒前
Grinder发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Kiosta应助凉小远采纳,获得10
11秒前
11秒前
11秒前
虞小渔完成签到,获得积分10
12秒前
鲜艳的手链完成签到,获得积分10
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383312
关于积分的说明 10529152
捐赠科研通 3103372
什么是DOI,文献DOI怎么找? 1709237
邀请新用户注册赠送积分活动 823008
科研通“疑难数据库(出版商)”最低求助积分说明 773764