Dendrite initiation and propagation in lithium metal solid-state batteries

陶瓷 复合材料 枝晶(数学) 材料科学 电解质 断裂力学 化学 数学 物理化学 电极 阳极 几何学
作者
Ziyang Ning,Guanchen Li,Dominic L. R. Melvin,Yang Chen,Junfu Bu,Dominic Spencer-Jolly,Junliang Liu,Bing Hu,Xiangwen Gao,Johann Perera,Gong Chen,Shengda D. Pu,Shengming Zhang,Boyang Liu,Gareth O. Hartley,Andrew J. Bodey,Richard I. Todd,Patrick S. Grant,David E.J. Armstrong,James Marrow,Charles W. Monroe,Peter G. Bruce
出处
期刊:Nature [Springer Nature]
卷期号:618 (7964): 287-293 被引量:81
标识
DOI:10.1038/s41586-023-05970-4
摘要

All-solid-state batteries with a Li anode and ceramic electrolyte have the potential to deliver a step change in performance compared with today's Li-ion batteries1,2. However, Li dendrites (filaments) form on charging at practical rates and penetrate the ceramic electrolyte, leading to short circuit and cell failure3,4. Previous models of dendrite penetration have generally focused on a single process for dendrite initiation and propagation, with Li driving the crack at its tip5-9. Here we show that initiation and propagation are separate processes. Initiation arises from Li deposition into subsurface pores, by means of microcracks that connect the pores to the surface. Once filled, further charging builds pressure in the pores owing to the slow extrusion of Li (viscoplastic flow) back to the surface, leading to cracking. By contrast, dendrite propagation occurs by wedge opening, with Li driving the dry crack from the rear, not the tip. Whereas initiation is determined by the local (microscopic) fracture strength at the grain boundaries, the pore size, pore population density and current density, propagation depends on the (macroscopic) fracture toughness of the ceramic, the length of the Li dendrite (filament) that partially occupies the dry crack, current density, stack pressure and the charge capacity accessed during each cycle. Lower stack pressures suppress propagation, markedly extending the number of cycles before short circuit in cells in which dendrites have initiated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee发布了新的文献求助10
刚刚
1秒前
2秒前
文字头-D完成签到,获得积分10
4秒前
tcl1998发布了新的文献求助10
5秒前
5秒前
6秒前
9秒前
9秒前
10秒前
科研通AI2S应助小小飞采纳,获得10
13秒前
白石发布了新的文献求助10
14秒前
深情真完成签到 ,获得积分10
16秒前
Ava应助ccc采纳,获得10
16秒前
18秒前
sai发布了新的文献求助10
19秒前
寡王一路硕博完成签到,获得积分10
20秒前
小仙鱼发布了新的文献求助10
21秒前
白石完成签到,获得积分10
21秒前
何莉完成签到,获得积分10
24秒前
Hao应助科研通管家采纳,获得10
25秒前
8R60d8应助科研通管家采纳,获得10
25秒前
爱鱼人士应助科研通管家采纳,获得10
25秒前
8R60d8应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
25秒前
黎明应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
爱鱼人士应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得30
25秒前
爱鱼人士应助科研通管家采纳,获得10
25秒前
L912294993应助科研通管家采纳,获得10
25秒前
25秒前
情怀应助科研通管家采纳,获得20
26秒前
不安青牛应助科研通管家采纳,获得10
26秒前
爱鱼人士应助科研通管家采纳,获得10
26秒前
不安青牛应助科研通管家采纳,获得10
26秒前
爱鱼人士应助科研通管家采纳,获得10
26秒前
Milton_z完成签到 ,获得积分10
26秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Herman Melville: A Biography (Volume 1, 1819-1851) 600
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
The Illustrated History of Gymnastics 500
Division and square root. Digit-recurrence algorithms and implementations 500
Hemerologies of Assyrian and Babylonian Scholars 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2494548
求助须知:如何正确求助?哪些是违规求助? 2152274
关于积分的说明 5499309
捐赠科研通 1873026
什么是DOI,文献DOI怎么找? 931432
版权声明 563513
科研通“疑难数据库(出版商)”最低求助积分说明 497909