A cost-effective, machine learning-based new unified risk-classification score (NU-CATS) for patients with endometrial cancer

医学 子宫内膜癌 内科学 肿瘤科 癌症 转移
作者
Shangen Zheng,Yilin Wu,Eric D. Donnelly,Jonathan B. Strauss
出处
期刊:Gynecologic Oncology [Elsevier BV]
卷期号:175: 97-106 被引量:1
标识
DOI:10.1016/j.ygyno.2023.06.008
摘要

Introduction Treatment for endometrial cancer (EC) is increasingly guided by molecular risk classifications. Here, we aimed at using machine learning (ML) to incorporate clinical and molecular risk factors to optimize risk assessment. Methods The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma (n = 596), Memorial Sloan Kettering-Metastatic Events and Tropisms (n = 1315) and the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (n = 4561) datasets were used to identify genetic alterations and clinicopathological features. Software packages including Keras, Pytorch, and Scikit Learn were tested to build artificial neural networks (ANNs) with a binary output as either intra-abdominal metastatic progression (‘1’) vs. non-metastatic (‘0’). Results Black patients with EC have worse prognosis than White patients, adjusting for TP53 or POLE mutation status. Over 75% of Black patients carry TP53 mutations as compared to approximately 40% of White patients. Older age is associated with an increasing likelihood of TP53 mutation, high risk histology, and distant metastasis. For patients above age 70, 91% of Black and 60% of White EC patients carry TP53 mutations. A ML-based New Unified classifiCATion Score (NU-CATS) that incorporates age, race, histology, mismatch repair status, and TP53 mutation status showed 75% accuracy in prognosticating intra-abdominal progression. A higher NU-CATS is associated with an increasing risk of having positive pelvic or para-aortic lymph nodes and distant metastasis. NU-CATS was shown to outperform Leiden/TransPORTEC model for estimating risk of FIGO Stage I/II disease progression and survival in Black EC patients. Conclusion The NU-CATS, a ML-based, cost-effective algorithm, incorporates diverse clinicopathologic and molecular variables of EC and yields superior prognostication of the risk of nodal involvement, distant metastasis, disease progression, and overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
畅快金鱼发布了新的文献求助10
1秒前
迷你的鸿涛完成签到,获得积分20
1秒前
Aowu应助www采纳,获得10
1秒前
1秒前
科研通AI5应助栗子采纳,获得10
1秒前
坚强的语琴完成签到 ,获得积分20
1秒前
小马甲应助沉静的龙猫采纳,获得10
2秒前
2秒前
Wilbert完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
JamesPei应助李多多采纳,获得10
4秒前
Laurel完成签到,获得积分10
4秒前
嘟嘟发布了新的文献求助10
4秒前
4秒前
SYLH应助zfihead采纳,获得10
4秒前
Shuo完成签到,获得积分20
5秒前
所所应助YBY采纳,获得10
5秒前
苗条的班发布了新的文献求助10
6秒前
游行发布了新的文献求助10
6秒前
清欢完成签到 ,获得积分10
6秒前
6秒前
安德鲁森完成签到 ,获得积分10
7秒前
7秒前
7秒前
从容道天发布了新的文献求助10
7秒前
Steve发布了新的文献求助10
7秒前
哈罗发布了新的文献求助10
8秒前
BananaSlayer完成签到,获得积分10
9秒前
可爱的函函应助戚薇采纳,获得10
10秒前
着急的枫叶完成签到,获得积分20
10秒前
SYLH应助雨田采纳,获得10
10秒前
微笑向卉完成签到,获得积分10
11秒前
潇洒代亦发布了新的文献求助10
11秒前
废寝忘食发布了新的文献求助20
11秒前
11秒前
12秒前
田様应助dungeon采纳,获得10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785362
求助须知:如何正确求助?哪些是违规求助? 3330919
关于积分的说明 10249035
捐赠科研通 3046415
什么是DOI,文献DOI怎么找? 1672000
邀请新用户注册赠送积分活动 800943
科研通“疑难数据库(出版商)”最低求助积分说明 759881