Superlattice-shelled nanocrystalline core structural design for highly sensitive GMI sensors

材料科学 纳米晶材料 无定形固体 超晶格 光电子学 微观结构 纳米结构 纳米技术 复合材料 有机化学 化学
作者
Chaoqun Pei,Bo Zhang,Jiuyuan Xie,Zongde Kou,Xuesong Li,Tao Feng,Baoan Sun,Weihua Wang
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:255: 119088-119088 被引量:16
标识
DOI:10.1016/j.actamat.2023.119088
摘要

Giant magnetic impendence (GMI) sensors are known as a significant pillar of modern technology, and has many applications in smart society such as automation, navigation and bioengineering. Developing high-sensitive GMI sensors operating under extremely weak magnetic fields is highly desirable yet challenging. Here, we proposed superlattice-shelled nanocrystalline core structural design in the cobalt-based amorphous sensor-core microwires for the highly sensitive GMI sensors. Continuous Co-based amorphous microwires with a length up to thousands of meters and uniform diameter is first fabricated by a scalable modified Taylor–Ulitovsky method and then processed by the picosecond lasering heat treatment. As a result, the microwire exhibits a unique nanostructure consisting of ultrafine nanocrystalline cores surround by the thermal-stable Cr-rich superlattice shell, and hence circumferential magnetic domains of the higher density and intensity. The GMI sensors made from nanostructured Co-based microwires show a sensitivity up to 1743 mV/Oe, the maximum GMI ratio up to 78%, increasing the performance by up to twice and nine times respectively over the GMI sensor made from the amorphous counterpart, and a wide linear range of ± 70000 nT. The correlation between the microstructure, magnetic domain structure and GMI performance is also established and discussed in the nanostructured Co-based microwires. Furthermore, we demonstrate the successful application of the highly sensitive GMI sensor in geomagnetic communication to detect underground energy transmission metal pipes with a detection resolution down to pT-level weak magnetic fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好元蝶完成签到 ,获得积分10
1秒前
慕青应助silsotiscolor采纳,获得10
1秒前
tao发布了新的文献求助10
2秒前
3秒前
jun_shen完成签到,获得积分10
3秒前
Gao完成签到 ,获得积分10
4秒前
5秒前
端庄的绿竹完成签到,获得积分10
6秒前
瘦瘦的艳发布了新的文献求助10
6秒前
丘比特应助飞翔的鸣采纳,获得10
7秒前
lyuyl发布了新的文献求助10
8秒前
Sunny完成签到,获得积分10
9秒前
大个应助QQ星采纳,获得10
9秒前
完美世界应助xixi采纳,获得10
10秒前
10秒前
啾啾咪咪完成签到,获得积分10
10秒前
11秒前
tent01发布了新的文献求助10
11秒前
李健应助wenxianxiazai123采纳,获得10
14秒前
科研通AI6应助科研小锄头采纳,获得10
14秒前
苹果音响应助WANDour采纳,获得10
14秒前
清爽山河完成签到 ,获得积分10
15秒前
努力学习发布了新的文献求助20
15秒前
Fairy发布了新的文献求助10
18秒前
18秒前
sober完成签到,获得积分10
20秒前
20秒前
yousheng完成签到,获得积分10
21秒前
不会写完成签到,获得积分10
22秒前
香蕉觅云应助19554133922采纳,获得10
22秒前
ssf发布了新的文献求助30
22秒前
lyuyl完成签到,获得积分10
23秒前
like411发布了新的文献求助10
23秒前
24秒前
瑾瑜关注了科研通微信公众号
25秒前
SciGPT应助sober采纳,获得10
26秒前
xixi发布了新的文献求助10
26秒前
王一博完成签到,获得积分10
26秒前
27秒前
Eternity完成签到,获得积分10
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543