Evaluating established deep learning methods in constructing integrated remote sensing drought index: A case study in China

中国 遥感 索引(排版) 深水 深度学习 地理 人工智能 环境科学 计算机科学 地质学 海洋学 考古 万维网
作者
Zhenheng Xu,Hao Sun,Tian Zhang,Huanyu Xu,Dan Wu,Jinhua Gao
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:286: 108405-108405 被引量:16
标识
DOI:10.1016/j.agwat.2023.108405
摘要

Agricultural drought seriously threatens the food and ecological security of most of the world's developing countries. Data-driven integrated agricultural drought index with remote sensing provides an effective tool to monitor, evaluate, and predict the agricultural drought. However, there is still a lack of comprehensive analytical work on taking the most effective machine learning (ML) and deep learning (DL) methods to construct such integrated drought index. In other words, it is still unclear whether the recent DL methods can improve integrated drought monitoring as compared with the currently widely used ML methods. Therefore, we critically evaluated the performances of four representative DL methods (represents the four currently popular DL network types) i.e., Entity Embedding Deep Neural Network (EEDNN), One-dimensional Convolutional Neural Network (1D-CNN), Gated Recurrent Unit (GRU), and Self-Attention Mechanism (SAM) and three widely used tree-based ML methods i.e., Cubist, Random Forest (RF), and Light Gradient Boosting Machine (LGBM), through constructing a QuickDRI like integrated drought index (abbreviated as QuickDRI-China). About 30 years of meteorological data, 14 years of remote sensing data, and various biophysical variables in China such as land use/land cover, available water capacity, irrigated agriculture, elevation, and ecoregion were employed in this study. Results showed that the EEDNN performed best, followed by the RF and LGBM, and then the other methods including the currently wide used Cubist, according to the station accuracy evaluations, spatial description evaluations, and responses to specific drought event. The tree-based ML methods such as RF and LGBM are still competitive in constructing the integrated agricultural drought index at the current stage. However, the higher accuracy, the smoother spatial description, and the more responsive ability of the EEDNN demonstrate great potential of DL methods. The future integrated agricultural drought monitoring with remote sensing should develop a specialized DL network for heterogeneous agricultural drought features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6应助kiki采纳,获得10
3秒前
xlj发布了新的文献求助10
3秒前
充电宝应助顺利的万宝路采纳,获得10
4秒前
Kate发布了新的文献求助10
4秒前
飘逸烨华完成签到,获得积分10
5秒前
online1881发布了新的文献求助10
7秒前
大力的问蕊完成签到,获得积分10
7秒前
Waris发布了新的文献求助10
8秒前
田様应助GG采纳,获得10
8秒前
kiki完成签到,获得积分10
10秒前
顺心书琴完成签到,获得积分10
10秒前
11秒前
cc发布了新的文献求助10
12秒前
Hello应助Messi采纳,获得10
12秒前
13秒前
嘿嘿完成签到,获得积分20
14秒前
14秒前
14秒前
15秒前
FashionBoy应助xlj采纳,获得10
15秒前
倩Q发布了新的文献求助10
16秒前
16秒前
www发布了新的文献求助10
16秒前
zzzjw发布了新的文献求助10
16秒前
ding应助鱼啵啵采纳,获得10
16秒前
大个应助三三采纳,获得10
17秒前
lynn221204发布了新的文献求助10
17秒前
17秒前
金桔儿发布了新的文献求助10
18秒前
18秒前
迪迦都红灯了完成签到 ,获得积分10
18秒前
19秒前
19秒前
Yangpc发布了新的文献求助10
19秒前
19秒前
科研通AI6应助Luffy采纳,获得10
21秒前
21秒前
Zhe完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538