作者
Zhiwei Zeng,Xiao Chang,Dawei Zhang,Haiyun Chen,Xiaoyan Zhong,Yikun Xie,Qian Yu,Chunyan Yan
摘要
Polygala tenuifolia is extensively used to treat amnesia in traditional Chinese medicine, and pharmacological studies have reported the beneficial effects of P. tenuifolia on intelligence and cognition. In the present study, the crude polysaccharide alkali-extracted from P. tenuifolia roots (PTB) inhibited lipopolysaccharide-induced microglia/astrocyte activation and significantly improved the learning and memory ability of Alzheimer's disease (AD) rats. To determine its bioactive components, a heteropolysaccharide (PTBP-1-3) was isolated from PTB. Structural analysis showed that PTBP-1-3 was composed of α-L-Araf-(1→, →3)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, β-D-Xylp-(1→, →2,3,4)-β-D-Xylp-(1→, α-L-Rhap-(1→, β-D-Galp-(1→, →4)-α-D-Galp-(1→, →6)-α-D-Galp-(1→, →6)-α-D-Glcp-(1→, →3,6)-α-D-Glcp-(1→, →6)-α-D-Manp-(1→, and →2,4)-β-D-Manp-(1→ residues. PTBP-1-3 decreased the production of NO, TNF-α, and IL-1β in lipopolysaccharide-activated BV2 microglia cells in a manner similar to that of minocycline. In conclusion, PTBP-1-3 exhibited a potent inhibitory effect on neuroinflammation, and could be one of the bioactive ingredients in PTB for anti-neuroinflammation. PTB and PTBP-1-3 may be potential therapeutic agents for the treatment of AD.