The Potential of Deep Learning to Revolutionize Current Breast MRI Practice

医学 乳房成像 磁共振成像 临床实习 医学物理学 核医学 乳房磁振造影 放射科 人工智能 乳腺摄影术 乳腺癌 家庭医学 内科学 计算机科学 癌症
作者
Priscilla J. Slanetz
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3)
标识
DOI:10.1148/radiol.222527
摘要

HomeRadiologyVol. 306, No. 3 PreviousNext Reviews and CommentaryEditorialThe Potential of Deep Learning to Revolutionize Current Breast MRI PracticePriscilla J. Slanetz Priscilla J. Slanetz Author AffiliationsFrom the Division of Breast Imaging, Department of Radiology, Boston University Medical Center, 820 Harrison Ave, FGH-4, Boston, MA 02118; and Boston University Chobanian & Avedisian School of Medicine, Boston, Mass.Address correspondence to the author (email: [email protected]).Priscilla J. Slanetz Published Online:Nov 15 2022https://doi.org/10.1148/radiol.222527MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. ACR Practice Parameter for the performance of contrast-enhanced magnetic resonance imaging (MRI) of the breast. https://www.acr.org/-/media/acr/files/practice-parameters/mr-contrast-breast.pdf. Published 2018. Accessed October 2, 2022. Google Scholar2. Mann RM, Kuhl CK, Moy L. Contrast-enhanced MRI for breast cancer screening. J Magn Reson Imaging 2019;50(2):377–390. Crossref, Medline, Google Scholar3. Kuhl C. The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 2007;244(2):356–378. Link, Google Scholar4. McDonald RJ, Levine D, Weinreb J, et al. Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 2018;289(2):517–534. Link, Google Scholar5. Reig B, Heacock L, Geras KJ, Moy L. Machine learning in breast MRI. J Magn Reson Imaging 2020;52(4):998–1018. Crossref, Medline, Google Scholar6. Balkenende L, Teuwen J, Mann RM. Application of deep learning in breast cancer imaging. Semin Nucl Med 2022;52(5):584–596. Crossref, Medline, Google Scholar7. Portnoi T, Yala A, Schuster T, et al. Deep learning model to assess cancer risk on the basis of a breast MR image alone. AJR Am J Roentgenol 2019;213(1):227–233. Crossref, Medline, Google Scholar8. Verburg E, van Gils CH, van der Velden BHM, et al. Deep learning for automated triaging of 4581 breast MRI examinations from the DENSE trial. Radiology 2022;302(1):29–36. Link, Google Scholar9. Chung M, Calabrese E, Mongan J, et al. Deep learning to simulate contrast-enhanced breast MRI of invasive breast cancer. Radiology 2023;306(3):e213199. https://doi.org/10.1148/radiol.213199. Published online November 15, 2022. Google Scholar10. Calabrese E, Rudie JD, Rauschecker AM, Villanueva-Meyer JE, Cha S. Feasibility of simulated postcontrast MRI of glioblastomas and lower-grade gliomas by using three-dimensional fully convolutional neural networks. Radiol Artif Intell 2021;3(5):e200276. Link, Google ScholarArticle HistoryReceived: Oct 2 2022Revision requested: Oct 18 2022Revision received: Oct 21 2022Accepted: Oct 21 2022Published online: Nov 15 2022 FiguresReferencesRelatedDetailsAccompanying This ArticleDeep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast CancerNov 15 2022RadiologyRecommended Articles Breast Cancer Risk Prediction Using Deep LearningRadiology2021Volume: 301Issue: 3pp. 559-560AI to Dismiss Normal Breast MRI Scans and Reduce WorkloadRadiology2021Volume: 302Issue: 1pp. 37-38New Screening Performance Metrics for Digital Breast Tomosynthesis in U.S. Community Practice from the Breast Cancer Surveillance ConsortiumRadiology2023Volume: 307Issue: 4Digital Mammography Is Similar to Screen-Film Mammography for Women with Personal History of Breast CancerRadiology2021Volume: 300Issue: 2pp. 301-302Breast Cancer Screening with Digital Breast Tomosynthesis Improves Performance of Mammography ScreeningRadiology2023Volume: 307Issue: 3See More RSNA Education Exhibits Breast Imaging and Intervention During Pregnancy and LactationDigital Posters2022Pregnancy-associated Breast Cancer and the Role of Imaging in the Pregnant and Lactating PatientDigital Posters2022Non-Contrast-Enhanced Breast MR Screening for Women with Dense BreastsDigital Posters2019 RSNA Case Collection Hyperplastic Residual Breast TissueRSNA Case Collection2022Multifocal breast cancerRSNA Case Collection2020Malignancy on abbreviated screening breast MRIRSNA Case Collection2020 Vol. 306, No. 3 Metrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XXHH完成签到,获得积分10
1秒前
姽婳wy发布了新的文献求助10
4秒前
5秒前
明亮元柏发布了新的文献求助10
5秒前
堪尔风完成签到 ,获得积分10
5秒前
平常的鞅完成签到,获得积分10
7秒前
11秒前
April发布了新的文献求助10
15秒前
应椋关注了科研通微信公众号
16秒前
猪猪hero发布了新的文献求助10
17秒前
九日完成签到 ,获得积分10
19秒前
22秒前
袁钰琳完成签到 ,获得积分10
23秒前
23秒前
一颗小洋葱完成签到 ,获得积分10
23秒前
希望天下0贩的0应助一二采纳,获得10
24秒前
27秒前
1112发布了新的文献求助10
29秒前
32秒前
32秒前
32秒前
33秒前
安紊完成签到,获得积分10
34秒前
Gauss应助三次成长采纳,获得50
34秒前
一二发布了新的文献求助10
36秒前
taster发布了新的文献求助10
37秒前
汉堡包应助暴走火箭筒采纳,获得10
38秒前
深情安青应助cicicixixici采纳,获得10
38秒前
39秒前
YING发布了新的文献求助50
39秒前
lt完成签到,获得积分10
40秒前
聪慧的诗兰完成签到,获得积分10
41秒前
HouYv完成签到 ,获得积分10
41秒前
April发布了新的文献求助10
43秒前
白元正完成签到,获得积分10
44秒前
刘松完成签到,获得积分10
44秒前
46秒前
刘松发布了新的文献求助10
47秒前
赵李锋完成签到,获得积分10
47秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776393
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207833
捐赠科研通 3037129
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870