Deep neural networks compression: A comparative survey and choice recommendations

计算机科学 利用 卷积神经网络 深度学习 人工智能 有损压缩 软件部署 机器学习 领域(数学) 资源(消歧) 人工神经网络 能源消耗 深层神经网络 占用率 数据挖掘 计算机安全 软件工程 生物 纯数学 数学 计算机网络 生态学
作者
Giosuè Cataldo Marinò,Alessandro Petrini,Dario Malchiodi,Marco Frasca
出处
期刊:Neurocomputing [Elsevier]
卷期号:520: 152-170 被引量:85
标识
DOI:10.1016/j.neucom.2022.11.072
摘要

The state-of-the-art performance for several real-world problems is currently reached by deep and, in particular, convolutional neural networks (CNN). Such learning models exploit recent results in the field of deep learning, leading to highly performing, yet very large neural networks with typically millions to billions of parameters. As a result, such models are often redundant and excessively oversized, with a detrimental effect on the environment in terms of unnecessary energy consumption and a limitation to their deployment on low-resource devices. The necessity for compression techniques able to reduce the number of model parameters and their resource demand is thereby increasingly felt by the research community. In this paper we propose the first extensive comparison, to the best of our knowledge, of the main lossy and structure-preserving approaches to compress pre-trained CNNs, applicable in principle to any existing model. Our study is intended to provide a first and preliminary guidance to choose the most suitable compression technique when there is the need to reduce the occupancy of pre-trained models. Both convolutional and fully-connected layers are included in the analysis. Our experiments involved two pre-trained state-of-the-art CNNs (proposed to solve classification or regression problems) and five benchmarks, and gave rise to important insights about the applicability and performance of such techniques w.r.t. the type of layer to be compressed and the category of problem tackled.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助llj采纳,获得10
1秒前
1秒前
1秒前
DrW完成签到,获得积分10
1秒前
2秒前
Jasper应助yxl采纳,获得10
2秒前
3秒前
astiria发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
恰个泡芙发布了新的文献求助10
6秒前
bzlish发布了新的文献求助10
6秒前
7秒前
皮凡发布了新的文献求助10
8秒前
闻屿完成签到,获得积分10
9秒前
丸子发布了新的文献求助30
9秒前
10秒前
FJLSDNMV发布了新的文献求助10
10秒前
CNS完成签到,获得积分10
10秒前
10秒前
A班袁湘琴发布了新的文献求助10
11秒前
CBY完成签到,获得积分10
11秒前
11秒前
隐形曼青应助bzlish采纳,获得10
13秒前
13秒前
浮游应助dpk采纳,获得10
13秒前
yxl发布了新的文献求助10
14秒前
14秒前
我是老大应助高高冰旋采纳,获得10
15秒前
16秒前
浮游应助suy采纳,获得10
17秒前
酷波er应助mucheng采纳,获得10
18秒前
asdfzxcv应助承一采纳,获得10
18秒前
大个应助rhr采纳,获得10
19秒前
尼克拉倒完成签到,获得积分10
20秒前
hyt发布了新的文献求助10
20秒前
21秒前
浮游应助suy采纳,获得10
22秒前
小二郎应助Dudu采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642830
求助须知:如何正确求助?哪些是违规求助? 4759998
关于积分的说明 15019132
捐赠科研通 4801370
什么是DOI,文献DOI怎么找? 2566676
邀请新用户注册赠送积分活动 1524579
关于科研通互助平台的介绍 1484206