Classifying Gait Alterations Using an Instrumented Smart Sock and Deep Learning

袜子 加速度计 步态 物理医学与康复 计算机科学 脚踝 鞋跟 步态分析 人工智能 人工神经网络 运动(音乐) 模拟 医学 工程类 外科 结构工程 计算机网络 哲学 美学 操作系统
作者
Pasindu Lugoda,Stephen Hayes,Theodore Hughes‐Riley,Alexander P. Turner,Mariana V. Martins,Ashley M. Cook,Kaivalya Raval,Carlos Oliveira,Philip Breedon,Tilak Dias
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (23): 23232-23242 被引量:6
标识
DOI:10.1109/jsen.2022.3216459
摘要

This article presents a noninvasive method of classifying gait patterns associated with various movement disorders and/or neurological conditions, utilizing unobtrusive, instrumented socks and a deep-learning network. Seamless instrumented socks were fabricated using three accelerometer-embedded yarns, positioned at the toe (hallux), above the heel, and on the lateral malleolus. Human trials were conducted on 12 able-bodied participants, an instrumented sock was worn on each foot. Participants were asked to complete seven trials consisting of their typical gait and six different gait types that mimicked the typical movement patterns associated with various movement disorders and neurological conditions. Four neural networks and an SVM were tested to ascertain the most effective method of automatic data classification. The bi-long short-term memory (LSTM) generated the most accurate results and illustrates that the use of three accelerometers per foot increased classification accuracy compared to a single accelerometer per foot by 11.4%. When only a single accelerometer was utilized for classification, the ankle accelerometer generated the most accurate results in comparison to the other two. The network was able to correctly classify five different gait types: stomp (100%), shuffle (66.8%), diplegic (66.6%), hemiplegic (66.6%), and "normal walking" (58.0%). The network was incapable of correctly differentiating foot slap (21.2%) and steppage gait (4.8%). This work demonstrates that instrumented textile socks incorporating three accelerometer yarns were capable of generating sufficient data to allow a neural network to distinguish between specific gait patterns. This may enable clinicians and therapists to remotely classify gait alterations and observe changes in gait during rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助柠柠采纳,获得10
刚刚
深情安青应助勤奋的沛芹采纳,获得10
刚刚
浮游应助zzzhy采纳,获得10
1秒前
1秒前
沉默完成签到 ,获得积分10
2秒前
星辰大海应助kento采纳,获得30
4秒前
linya完成签到,获得积分10
4秒前
5秒前
Ava应助lan采纳,获得10
5秒前
WLL完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
猪猪完成签到,获得积分10
9秒前
义气冥茗完成签到,获得积分10
9秒前
Jessica完成签到,获得积分10
10秒前
11秒前
FashionBoy应助yyy采纳,获得10
13秒前
风中冰香应助科研通管家采纳,获得10
13秒前
13秒前
周正完成签到,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得30
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
小猴子应助科研通管家采纳,获得10
13秒前
DE应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
墩墩完成签到,获得积分10
14秒前
风中冰香应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460885
求助须知:如何正确求助?哪些是违规求助? 4565924
关于积分的说明 14302173
捐赠科研通 4491506
什么是DOI,文献DOI怎么找? 2460346
邀请新用户注册赠送积分活动 1449679
关于科研通互助平台的介绍 1425492