SuperFusion: A Versatile Image Registration and Fusion Network with Semantic Awareness

计算机科学 图像融合 人工智能 Softmax函数 图像配准 计算机视觉 融合 分割 特征(语言学) 图像(数学) 约束(计算机辅助设计) 人工神经网络 数学 几何学 语言学 哲学
作者
Linfeng Tang,Yuxin Deng,Yong Ma,Jun Huang,Jiayi Ma
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 2121-2137 被引量:261
标识
DOI:10.1109/jas.2022.106082
摘要

Image fusion aims to integrate complementary information in source images to synthesize a fused image comprehensively characterizing the imaging scene. However, existing image fusion algorithms are only applicable to strictly aligned source images and cause severe artifacts in the fusion results when input images have slight shifts or deformations. In addition, the fusion results typically only have good visual effect, but neglect the semantic requirements of high-level vision tasks. This study incorporates image registration, image fusion, and semantic requirements of high-level vision tasks into a single framework and proposes a novel image registration and fusion method, named SuperFusion. Specifically, we design a registration network to estimate bidirectional deformation fields to rectify geometric distortions of input images under the supervision of both photometric and end-point constraints. The registration and fusion are combined in a symmetric scheme, in which while mutual promotion can be achieved by optimizing the naive fusion loss, it is further enhanced by the mono-modal consistent constraint on symmetric fusion outputs. In addition, the image fusion network is equipped with the global spatial attention mechanism to achieve adaptive feature integration. Moreover, the semantic constraint based on the pre-trained segmentation model and Lovasz-Softmax loss is deployed to guide the fusion network to focus more on the semantic requirements of high-level vision tasks. Extensive experiments on image registration, image fusion, and semantic segmentation tasks demonstrate the superiority of our SuperFusion compared to the state-of-the-art alternatives. The source code and pre-trained model are publicly available at https://github.com/Linfeng-Tang/SuperFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助火星上的初柔采纳,获得10
1秒前
215858687完成签到,获得积分10
1秒前
航哥完成签到,获得积分10
3秒前
3秒前
zxy完成签到,获得积分10
4秒前
yao完成签到,获得积分10
4秒前
科研通AI5应助液体剑0932采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
wlj完成签到 ,获得积分10
8秒前
feizhuliu完成签到,获得积分10
8秒前
Jasper应助叶圣贤采纳,获得10
8秒前
依霏发布了新的文献求助10
8秒前
木目完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
yam发布了新的文献求助10
9秒前
CodeCraft应助雪白鸿涛采纳,获得10
11秒前
11秒前
sss完成签到,获得积分10
12秒前
13秒前
ZBB发布了新的文献求助10
13秒前
15秒前
李健应助依霏采纳,获得10
17秒前
CipherSage应助初见采纳,获得10
17秒前
znn发布了新的文献求助10
18秒前
Yichao完成签到,获得积分10
20秒前
叶圣贤发布了新的文献求助10
20秒前
标致的凡旋完成签到,获得积分10
21秒前
cxt1346完成签到 ,获得积分10
21秒前
初雪应助郭guo9采纳,获得10
23秒前
初雪应助郭guo9采纳,获得10
23秒前
依霏完成签到,获得积分10
24秒前
26秒前
26秒前
28秒前
28秒前
纯真从寒发布了新的文献求助10
28秒前
情怀应助1282941496采纳,获得10
29秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291083
求助须知:如何正确求助?哪些是违规求助? 3818231
关于积分的说明 11957162
捐赠科研通 3461710
什么是DOI,文献DOI怎么找? 1898690
邀请新用户注册赠送积分活动 947275
科研通“疑难数据库(出版商)”最低求助积分说明 850032