Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis

风力发电 粒子群优化 风电预测 主成分分析 随机性 人工神经网络 计算机科学 可再生能源 特征(语言学) 电力系统 人工智能 工程类 数据挖掘 数学优化 功率(物理) 算法 数学 统计 语言学 物理 电气工程 哲学 量子力学
作者
Yulong Xiao,Chongzhe Zou,Hetian Chi,Rengcun Fang
出处
期刊:Energy [Elsevier BV]
卷期号:267: 126503-126503 被引量:65
标识
DOI:10.1016/j.energy.2022.126503
摘要

Wind power is a clean resource that is widely used as a renewable energy source. Accurate wind power forecasting is important for the efficient and stable use of wind energy. The erratic stochastic nature of wind power generation and the complexity of the data pose a significant challenge for short-term forecasting. Extracting features from the complex wind power data can improve the prediction models, which is a key issue for short-term forecasting. In this paper, a feature-weighted principal component analysis (WPCA) method and an improved gated recurrent unit (GRU) neural network model with optimized hyperparameters using a particle swarm optimization (PSO) algorithm are proposed. Compared with other good machine learning models, the proposed hybrid WPCA-PSO-GRU model is used to perform power prediction for a real-world wind farm. The results show that the MAE and RMSE of the WPCA-PSO-GRU model are reduced by 5.3%–16% and 10%–16% respectively, and R2 is increased by 2.1%–3.1% compared to the conventional model. The proposed model can reduce the impact of noisy data on model training, randomness, and the volatility of wind power generation. This study can also have wide applicability with complex data samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
祺王862完成签到,获得积分10
1秒前
1秒前
fan完成签到 ,获得积分10
4秒前
lalala发布了新的文献求助10
4秒前
HH完成签到,获得积分10
5秒前
5秒前
5秒前
wang发布了新的文献求助10
5秒前
7秒前
ziyue发布了新的文献求助10
7秒前
小明发布了新的文献求助10
7秒前
呆呆完成签到,获得积分10
8秒前
xiaofang完成签到,获得积分10
9秒前
hyq完成签到,获得积分10
10秒前
无聊的山槐完成签到,获得积分10
11秒前
ghtsmile完成签到,获得积分10
12秒前
OD完成签到,获得积分10
12秒前
12秒前
斯文败类应助可靠强炫采纳,获得10
12秒前
liu发布了新的文献求助10
12秒前
bkagyin应助邱辛瑶采纳,获得10
12秒前
13秒前
脑洞疼应助hhh采纳,获得10
13秒前
小马甲应助ziyue采纳,获得10
14秒前
xiaoxiao发布了新的文献求助10
15秒前
传奇3应助魔幻的如冰采纳,获得10
16秒前
17秒前
无奈满天发布了新的文献求助10
17秒前
17秒前
yyy发布了新的文献求助10
17秒前
谦让小熊猫完成签到,获得积分10
17秒前
情怀应助JGCATZ采纳,获得200
18秒前
隐形曼青应助wang采纳,获得10
22秒前
23秒前
汉堡包应助锌小子采纳,获得10
23秒前
whaaaley发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836233
求助须知:如何正确求助?哪些是违规求助? 3378583
关于积分的说明 10504968
捐赠科研通 3098204
什么是DOI,文献DOI怎么找? 1706318
邀请新用户注册赠送积分活动 820958
科研通“疑难数据库(出版商)”最低求助积分说明 772349