An attention-based LSTM model for long-term runoff forecasting and factor recognition

地表径流 计算机科学 蒸散量 人工智能 钥匙(锁) 机器学习 集合(抽象数据类型) 期限(时间) 数据挖掘 生态学 计算机安全 量子力学 生物 物理 程序设计语言
作者
Dongyang Han,Pan Liu,Kang Xie,He Li,Qian Xia,Qian Cheng,Yibo Wang,Zhikai Yang,Yanjun Zhang,Jun Xia
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:18 (2): 024004-024004 被引量:30
标识
DOI:10.1088/1748-9326/acaedd
摘要

Abstract With advances in artificial intelligence, machine learning-based models such as long short-term memory (LSTM) models have shown much promise in forecasting long-term runoff by mapping pathways between large-scale climate patterns and catchment runoff responses without considering physical processes. The recognition of key factors plays a vital role and thus affects the performance of the model. However, there is no conclusion on which recognition algorithm is the most suitable. To address this issue, an LSTM model combined with two attention mechanisms both in the input and hidden layers, namely AT-LSTM, is proposed for long-term runoff forecasting at Yichang and Pingshan stations in China. The added attention mechanisms automatically assign weights to 130 climate phenomenon indexes, avoiding the use of subjectively set recognition algorithms. Results show that the AT-LSTM model outperforms the Pearson’s correlation based LSTM model in terms of four evaluation metrics for monthly runoff forecasting. Further, the set indirect runoff prediction method verifies that the AT-LSTM model also performs effectively in precipitation and potential evapotranspiration forecasting, and the indirect runoff prediction is inferior to the AT-LSTM model to establish a direct link between climate factors and runoff. Finally, four key factors related to runoff are identified by the attention mechanism and their impacts on runoff are analyzed on intra- and inter-annual scales. The proposed AT-LSTM model can effectively improve the accuracy of long-term forecasting and identify the dynamic influence of input factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彳亍发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助20
3秒前
3秒前
知性的幻巧完成签到,获得积分10
3秒前
瓜子壳完成签到,获得积分20
3秒前
李尚泽完成签到,获得积分10
3秒前
3秒前
充电宝应助niko采纳,获得10
4秒前
4秒前
坚定的海露完成签到,获得积分10
4秒前
曾经的孤萍完成签到,获得积分10
4秒前
雪白的威完成签到,获得积分10
4秒前
浮游应助缥缈紊采纳,获得10
5秒前
6秒前
xush发布了新的文献求助10
6秒前
6秒前
coechor完成签到,获得积分10
7秒前
sunjr发布了新的文献求助10
7秒前
hhh发布了新的文献求助30
7秒前
李小二完成签到,获得积分10
7秒前
搜集达人应助科研天才采纳,获得10
7秒前
9秒前
9秒前
zcl应助卡卡采纳,获得100
9秒前
时尚的冰棍儿完成签到 ,获得积分10
10秒前
彭于晏应助嗯qq采纳,获得10
10秒前
布丁完成签到,获得积分10
10秒前
10秒前
小马发布了新的文献求助30
11秒前
宁宁发布了新的文献求助10
11秒前
11秒前
12秒前
lixiaolu完成签到 ,获得积分10
12秒前
ding应助瓜子壳采纳,获得10
13秒前
小二郎应助冷傲的元容采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676516
求助须知:如何正确求助?哪些是违规求助? 4054242
关于积分的说明 12537097
捐赠科研通 3748377
什么是DOI,文献DOI怎么找? 2070396
邀请新用户注册赠送积分活动 1099344
科研通“疑难数据库(出版商)”最低求助积分说明 979065