An attention-based LSTM model for long-term runoff forecasting and factor recognition

地表径流 计算机科学 蒸散量 人工智能 钥匙(锁) 机器学习 集合(抽象数据类型) 期限(时间) 数据挖掘 生态学 物理 计算机安全 量子力学 生物 程序设计语言
作者
Dongyang Han,Pan Liu,Kang Xie,He Li,Qian Xia,Qian Cheng,Yibo Wang,Zhikai Yang,Yanjun Zhang,Jun Xia
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:18 (2): 024004-024004 被引量:30
标识
DOI:10.1088/1748-9326/acaedd
摘要

Abstract With advances in artificial intelligence, machine learning-based models such as long short-term memory (LSTM) models have shown much promise in forecasting long-term runoff by mapping pathways between large-scale climate patterns and catchment runoff responses without considering physical processes. The recognition of key factors plays a vital role and thus affects the performance of the model. However, there is no conclusion on which recognition algorithm is the most suitable. To address this issue, an LSTM model combined with two attention mechanisms both in the input and hidden layers, namely AT-LSTM, is proposed for long-term runoff forecasting at Yichang and Pingshan stations in China. The added attention mechanisms automatically assign weights to 130 climate phenomenon indexes, avoiding the use of subjectively set recognition algorithms. Results show that the AT-LSTM model outperforms the Pearson’s correlation based LSTM model in terms of four evaluation metrics for monthly runoff forecasting. Further, the set indirect runoff prediction method verifies that the AT-LSTM model also performs effectively in precipitation and potential evapotranspiration forecasting, and the indirect runoff prediction is inferior to the AT-LSTM model to establish a direct link between climate factors and runoff. Finally, four key factors related to runoff are identified by the attention mechanism and their impacts on runoff are analyzed on intra- and inter-annual scales. The proposed AT-LSTM model can effectively improve the accuracy of long-term forecasting and identify the dynamic influence of input factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆梨医生发布了新的文献求助10
刚刚
4秒前
zxzxzx发布了新的文献求助20
4秒前
zhangxueqing发布了新的文献求助10
4秒前
5秒前
zky完成签到,获得积分10
6秒前
6秒前
xyy216发布了新的文献求助10
6秒前
哚多小丫完成签到,获得积分10
6秒前
modesty发布了新的文献求助10
9秒前
hkh发布了新的文献求助10
10秒前
阿胡发布了新的文献求助10
11秒前
12秒前
我是老大应助momo采纳,获得10
12秒前
繁荣的菲音完成签到,获得积分10
13秒前
ArmadilloLucky完成签到 ,获得积分10
13秒前
1111完成签到 ,获得积分10
14秒前
王云莲发布了新的文献求助10
14秒前
研友_VZG7GZ应助zhangxueqing采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
傲娇的冷亦完成签到,获得积分10
19秒前
海荣完成签到,获得积分10
19秒前
peri7完成签到 ,获得积分10
20秒前
余姓懒完成签到,获得积分10
22秒前
Billy应助陶1122采纳,获得30
23秒前
25秒前
lym97完成签到 ,获得积分10
28秒前
zhangxueqing完成签到,获得积分10
29秒前
ddd发布了新的文献求助10
29秒前
万能图书馆应助xiaojian_291采纳,获得10
32秒前
xyy216完成签到,获得积分20
32秒前
十二应助科研通管家采纳,获得10
33秒前
33秒前
十二应助科研通管家采纳,获得10
33秒前
33秒前
十二应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982194
求助须知:如何正确求助?哪些是违规求助? 3525874
关于积分的说明 11229022
捐赠科研通 3263773
什么是DOI,文献DOI怎么找? 1801673
邀请新用户注册赠送积分活动 879942
科研通“疑难数据库(出版商)”最低求助积分说明 807716